1,960 research outputs found

    Elasticity of Semiflexible Biopolymer Networks

    Full text link
    We develop a model for gels and entangled solutions of semiflexible biopolymers such as F-actin. Such networks play a crucial structural role in the cytoskeleton of cells. We show that the rheologic properties of these networks can result from nonclassical rubber elasticity. This model can explain a number of elastic properties of such networks {\em in vitro}, including the concentration dependence of the storage modulus and yield strain.Comment: Uses RevTeX, full postscript with figures available at http://www.umich.edu/~fcm/preprints/agel/agel.htm

    Gravitational waves from single neutron stars: an advanced detector era survey

    Full text link
    With the doors beginning to swing open on the new gravitational wave astronomy, this review provides an up-to-date survey of the most important physical mechanisms that could lead to emission of potentially detectable gravitational radiation from isolated and accreting neutron stars. In particular we discuss the gravitational wave-driven instability and asteroseismology formalism of the f- and r-modes, the different ways that a neutron star could form and sustain a non-axisymmetric quadrupolar "mountain" deformation, the excitation of oscillations during magnetar flares and the possible gravitational wave signature of pulsar glitches. We focus on progress made in the recent years in each topic, make a fresh assessment of the gravitational wave detectability of each mechanism and, finally, highlight key problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor corrections to match published versio

    Dynamical mean-field theory of spiking neuron ensembles: response to a single spike with independent noises

    Full text link
    Dynamics of an ensemble of NN-unit FitzHugh-Nagumo (FN) neurons subject to white noises has been studied by using a semi-analytical dynamical mean-field (DMF) theory in which the original 2N2 N-dimensional {\it stochastic} differential equations are replaced by 8-dimensional {\it deterministic} differential equations expressed in terms of moments of local and global variables. Our DMF theory, which assumes weak noises and the Gaussian distribution of state variables, goes beyond weak couplings among constituent neurons. By using the expression for the firing probability due to an applied single spike, we have discussed effects of noises, synaptic couplings and the size of the ensemble on the spike timing precision, which is shown to be improved by increasing the size of the neuron ensemble, even when there are no couplings among neurons. When the coupling is introduced, neurons in ensembles respond to an input spike with a partial synchronization. DMF theory is extended to a large cluster which can be divided into multiple sub-clusters according to their functions. A model calculation has shown that when the noise intensity is moderate, the spike propagation with a fairly precise timing is possible among noisy sub-clusters with feed-forward couplings, as in the synfire chain. Results calculated by our DMF theory are nicely compared to those obtained by direct simulations. A comparison of DMF theory with the conventional moment method is also discussed.Comment: 29 pages, 2 figures; augmented the text and added Appendice

    Conceptual learning : the priority for higher education

    Get PDF
    The common sense notion of learning as the all-pervasive acquisition of new behaviour and knowledge, made vivid by experience, is an incomplete characterisation, because it assumes that the learning of behaviour and the learning of knowledge are indistinguishable, and that acquisition constitutes learning without reference to transfer. A psychological level of analysis is used to argue that conceptual learning should have priority in higher education

    An algebraic approach to problems with polynomial Hamiltonians on Euclidean spaces

    Full text link
    Explicit expressions are given for the actions and radial matrix elements of basic radial observables on multi-dimensional spaces in a continuous sequence of orthonormal bases for unitary SU(1,1) irreps. Explicit expressions are also given for SO(N)-reduced matrix elements of basic orbital observables. These developments make it possible to determine the matrix elements of polynomial and a other Hamiltonians analytically, to within SO(N) Clebsch-Gordan coefficients, and to select an optimal basis for a particular problem such that the expansion of eigenfunctions is most rapidly convergent.Comment: 19 pages, 8 figure

    Relationship between psychological and biological factors and physical activity and exercise behaviour in Filipino students

    Get PDF
    The aim of the present study was threefold. Firstly, it investigated whether a general measure or specific measure of motivational orientation was better in describing the relationship between motivation and exercise behaviour. Secondly, it examined the relationship between the four most popular indirect methods of body composition assessment and physical activity and exercise patterns. Thirdly, the interaction between motivation and body composition on physical activity and exercise behaviour was explored in a sample of 275 Filipino male and female students. Males were found to have higher levels of exercise whereas females had higher levels of physical activity. Furthermore, general self-motivation together with body weight and percentage body fat were found to be the best predictor of exercise behaviour whereas the tension/pressure subscale of the ‘Intrinsic Motivation Inventory’ (IMI) was the best predictor of levels of physical activity. However, significant gender differences were observed. That is, for the males only self-motivation and for the females only body weight and BMI predicted exercise behaviour. Also, tension/pressure predicted physical activity levels for the females but not the males. No inverse relationship was found between the four body composition measures and exercise and physical activity behaviour. The results support the notion that the psychobiological approach might be particularly relevant for high intensity exercise situations but also highlights some important gender differences. Finally, the results of this study emphasise the need for more cross-cultural research

    Walks4work: Rationale and study design to investigate walking at lunchtime in the workplace setting

    Get PDF
    Background: Following recruitment of a private sector company, an 8week lunchtime walking intervention was implemented to examine the effect of the intervention on modifiable cardiovascular disease risk factors, and further to see if walking environment had any further effect on the cardiovascular disease risk factors. Methods. For phase 1 of the study participants were divided into three groups, two lunchtime walking intervention groups to walk around either an urban or natural environment twice a week during their lunch break over an 8week period. The third group was a waiting-list control who would be invited to join the walking groups after phase 1. In phase 2 all participants were encouraged to walk during their lunch break on self-selecting routes. Health checks were completed at baseline, end of phase 1 and end of phase 2 in order to measure the impact of the intervention on cardiovascular disease risk. The primary outcome variables of heart rate and heart rate variability were measured to assess autonomic function associated with cardiovascular disease. Secondary outcome variables (Body mass index, blood pressure, fitness, autonomic response to a stressor) related to cardiovascular disease were also measured. The efficacy of the intervention in increasing physical activity was objectively monitored throughout the 8-weeks using an accelerometer device. Discussion. The results of this study will help in developing interventions with low researcher input with high participant output that may be implemented in the workplace. If effective, this study will highlight the contribution that natural environments can make in the reduction of modifiable cardiovascular disease risk factors within the workplace. © 2012 Brown et al.; licensee BioMed Central Ltd

    Diffusing-wave spectroscopy of nonergodic media

    Full text link
    We introduce an elegant method which allows the application of diffusing-wave spectroscopy (DWS) to nonergodic, solid-like samples. The method is based on the idea that light transmitted through a sandwich of two turbid cells can be considered ergodic even though only the second cell is ergodic. If absorption and/or leakage of light take place at the interface between the cells, we establish a so-called "multiplication rule", which relates the intensity autocorrelation function of light transmitted through the double-cell sandwich to the autocorrelation functions of individual cells by a simple multiplication. To test the proposed method, we perform a series of DWS experiments using colloidal gels as model nonergodic media. Our experimental data are consistent with the theoretical predictions, allowing quantitative characterization of nonergodic media and demonstrating the validity of the proposed technique.Comment: RevTeX, 12 pages, 6 figures. Accepted for publication in Phys. Rev.
    corecore