5 research outputs found

    L1L^1-Contraction Property of Entropy Solutions for Scalar Conservation Laws with Minimal Regularity Assumptions on the Flux

    Full text link
    This paper is concerned with entropy solutions of scalar conservation laws of the form \partial_{t}u+\diver f=0 in Rd×(0,)\mathbb{R}^d\times(0,\infty). The flux f=f(x,u)f=f(x,u) depends explicitly on the spatial variable xx. Using an extension of Kruzkov's method, we establish the L1L^1-contraction property of entropy solutions under minimal regularity assumptions on the flux

    Jumps in Besov spaces and fine properties of Besov and fractional Sobolev functions

    Full text link
    In this paper we analyse functions in Besov spaces Bq,1/q(RN,Rd),q(1,)B^{1/q}_{q,\infty}(\mathbb{R}^N,\mathbb{R}^d),q\in (1,\infty), and functions in fractional Sobolev spaces Wr,q(RN,Rd),r(0,1),q[1,)W^{r,q}(\mathbb{R}^N,\mathbb{R}^d),r\in (0,1),q\in [1,\infty). We prove for Besov functions uBq,1/q(RN,Rd)u\in B^{1/q}_{q,\infty}(\mathbb{R}^N,\mathbb{R}^d) the summability of the difference between one-sided approximate limits in power qq, u+uq|u^+-u^-|^q, along the jump set Ju\mathcal{J}_u of uu with respect to Hausdorff measure HN1\mathcal{H}^{N-1}, and establish the best bound from above on the integral Juu+uqdHN1\int_{\mathcal{J}_u}|u^+-u^-|^qd\mathcal{H}^{N-1} in terms of Besov constants. We show for functions uBq,1/q(RN,Rd),q(1,)u\in B^{1/q}_{q,\infty}(\mathbb{R}^N,\mathbb{R}^d),q\in (1,\infty) that \begin{equation} \liminf\limits_{\varepsilon \to 0^+}\fint_{B_{\varepsilon}(x)} |u(z)-u_{B_{\varepsilon}(x)}|^qdz=0 \end{equation} for every xx outside of a HN1\mathcal{H}^{N-1}-sigma finite set. For fractional Sobolev functions uWr,q(RN,Rd)u\in W^{r,q}(\mathbb{R}^N,\mathbb{R}^d) we prove that \begin{equation} \lim_{\rho\to 0^+}\fint_{B_{\rho}(x)}\fint_{B_{\rho}(x)} |u\big(z\big)-u(y)|^qdzdy=0 \end{equation} for HNrq\mathcal{H}^{N-rq} a.e. xx, where q[1,)q\in[1,\infty), r(0,1)r\in(0,1) and rqNrq\leq N. We prove for uW1,q(RN),1<qNu\in W^{1,q}(\mathbb{R}^N),1<q\leq N, that \begin{equation} \lim\limits_{\varepsilon\to 0^+}\fint_{B_{\varepsilon}(x)} |u(z)-u_{B_{\varepsilon}(x)}|^qdz=0 \end{equation} for HNq\mathcal{H}^{N-q} a.e. xRNx\in \mathbb{R}^N

    On fine differentiability properties of Sobolev functions

    Full text link
    We study fine differentiability properties of functions in Sobolev spaces. We prove that the difference quotient of fWp1(Rn)f\in W^{1}_{p}(\mathbb R^n) converges to the formal differential of this function in the W^{1}_{p,\loc}-topology \cp_p-a.~e. under an additional assumption of existence of a refined weak gradient. This result is extended to convergence of remainders in the corresponding Taylor formula for functions in WpkW^{k}_{p} spaces. In addition we prove LpL_p-approximately differentiability \cp_p-a.e for functions fWp1(Rn)f\in W^1_p(\mathbb{R}^n) with a refined weak gradient.Comment: 24 page

    Approximations in Besov Spaces and Jump Detection of Besov Functions with Bounded Variation

    Full text link
    In this paper, we provide a proof that functions belonging to Besov spaces Bq,r(RN,Rd)B^{r}_{q,\infty}(\mathbb{R}^N,\mathbb{R}^d), q[1,)q\in [1,\infty), r(0,1)r\in(0,1), satisfy the following formula under a certain condition: \begin{equation} \label{eq:main result in abstract} \lim_{{\epsilon}\to 0^+}\frac{1}{|\ln{\epsilon}|}\left[u_{\epsilon}\right]^q_{W^{r,q}(\mathbb{R}^N,\mathbb{R}^d)}=N\lim_{{\epsilon}\to 0^+}\int_{\mathbb{R}^N}\frac{1}{{\epsilon}^N}\int_{B_{\epsilon}(x)}\frac{|u(x)-u(y)|^q}{|x-y|^{rq}}dydx. \end{equation} Here, []Wr,q\left[\cdot\right]_{W^{r,q}} represents the Gagliardo seminorm, and uϵu_{\epsilon} denotes the convolution of uu with a mollifier η(ϵ)(x):=1ϵNη(xϵ)\eta_{(\epsilon)}(x):=\frac{1}{\epsilon^N}\eta\left(\frac{x}{\epsilon}\right), ηW1,1(RN),RNη(z)dz=1\eta\in W^{1,1}(\mathbb{R}^N),\int_{\mathbb{R}^N}\eta(z)dz=1. Furthermore, we prove that every function uu in BV(RN,Rd)Bp,1/p(RN,Rd),p(1,),BV(\mathbb{R}^N,\mathbb{R}^d)\cap B^{1/p}_{p,\infty}(\mathbb{R}^N,\mathbb{R}^d),p\in(1,\infty), satisfies \begin{multline} \lim_{\epsilon\to 0^+}\frac{1}{|\ln{\epsilon}|}\left[u_{\epsilon}\right]^q_{W^{1/q,q}(\mathbb{R}^N,\mathbb{R}^d)}=N\lim_{{\epsilon}\to 0^+}\int_{\mathbb{R}^N}\frac{1}{{\epsilon}^N}\int_{B_{\epsilon}(x)}\frac{|u(x)-u(y)|^q}{|x-y|}dydx =\left(\int_{S^{N-1}}|z_1|~d\mathcal{H}^{N-1}(z)\right)\int_{\mathcal{J}_u} \Big|u^+(x)-u^-(x)\Big|^q d\mathcal{H}^{N-1}(x), \end{multline} for every 1<q<p1<q<p. Here u+,uu^+,u^- are the one-sided approximate limits of uu along the jump set Ju\mathcal{J}_u
    corecore