In this paper we analyse functions in Besov spaces
Bq,∞1/q(RN,Rd),q∈(1,∞), and functions
in fractional Sobolev spaces Wr,q(RN,Rd),r∈(0,1),q∈[1,∞). We prove for Besov functions u∈Bq,∞1/q(RN,Rd) the summability of the
difference between one-sided approximate limits in power q, ∣u+−u−∣q,
along the jump set Ju of u with respect to Hausdorff measure
HN−1, and establish the best bound from above on the integral
∫Ju∣u+−u−∣qdHN−1 in terms of Besov
constants. We show for functions u∈Bq,∞1/q(RN,Rd),q∈(1,∞) that
\begin{equation} \liminf\limits_{\varepsilon \to 0^+}\fint_{B_{\varepsilon}(x)}
|u(z)-u_{B_{\varepsilon}(x)}|^qdz=0 \end{equation} for every x outside of a
HN−1-sigma finite set. For fractional Sobolev functions u∈Wr,q(RN,Rd) we prove that \begin{equation}
\lim_{\rho\to 0^+}\fint_{B_{\rho}(x)}\fint_{B_{\rho}(x)}
|u\big(z\big)-u(y)|^qdzdy=0 \end{equation} for HN−rq a.e. x,
where q∈[1,∞), r∈(0,1) and rq≤N. We prove for u∈W1,q(RN),1<q≤N, that \begin{equation}
\lim\limits_{\varepsilon\to 0^+}\fint_{B_{\varepsilon}(x)}
|u(z)-u_{B_{\varepsilon}(x)}|^qdz=0 \end{equation} for HN−q a.e.
x∈RN