Jumps in Besov spaces and fine properties of Besov and fractional Sobolev functions

Abstract

In this paper we analyse functions in Besov spaces Bq,1/q(RN,Rd),q(1,)B^{1/q}_{q,\infty}(\mathbb{R}^N,\mathbb{R}^d),q\in (1,\infty), and functions in fractional Sobolev spaces Wr,q(RN,Rd),r(0,1),q[1,)W^{r,q}(\mathbb{R}^N,\mathbb{R}^d),r\in (0,1),q\in [1,\infty). We prove for Besov functions uBq,1/q(RN,Rd)u\in B^{1/q}_{q,\infty}(\mathbb{R}^N,\mathbb{R}^d) the summability of the difference between one-sided approximate limits in power qq, u+uq|u^+-u^-|^q, along the jump set Ju\mathcal{J}_u of uu with respect to Hausdorff measure HN1\mathcal{H}^{N-1}, and establish the best bound from above on the integral Juu+uqdHN1\int_{\mathcal{J}_u}|u^+-u^-|^qd\mathcal{H}^{N-1} in terms of Besov constants. We show for functions uBq,1/q(RN,Rd),q(1,)u\in B^{1/q}_{q,\infty}(\mathbb{R}^N,\mathbb{R}^d),q\in (1,\infty) that \begin{equation} \liminf\limits_{\varepsilon \to 0^+}\fint_{B_{\varepsilon}(x)} |u(z)-u_{B_{\varepsilon}(x)}|^qdz=0 \end{equation} for every xx outside of a HN1\mathcal{H}^{N-1}-sigma finite set. For fractional Sobolev functions uWr,q(RN,Rd)u\in W^{r,q}(\mathbb{R}^N,\mathbb{R}^d) we prove that \begin{equation} \lim_{\rho\to 0^+}\fint_{B_{\rho}(x)}\fint_{B_{\rho}(x)} |u\big(z\big)-u(y)|^qdzdy=0 \end{equation} for HNrq\mathcal{H}^{N-rq} a.e. xx, where q[1,)q\in[1,\infty), r(0,1)r\in(0,1) and rqNrq\leq N. We prove for uW1,q(RN),1<qNu\in W^{1,q}(\mathbb{R}^N),1<q\leq N, that \begin{equation} \lim\limits_{\varepsilon\to 0^+}\fint_{B_{\varepsilon}(x)} |u(z)-u_{B_{\varepsilon}(x)}|^qdz=0 \end{equation} for HNq\mathcal{H}^{N-q} a.e. xRNx\in \mathbb{R}^N

    Similar works

    Full text

    thumbnail-image

    Available Versions