24 research outputs found

    Induction of apoptosis in HeLa cells by chloroform fraction of seed extracts of Nigella sativa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer remains one of the most dreaded diseases causing an astonishingly high death rate, second only to cardiac arrest. The fact that conventional and newly emerging treatment procedures like chemotherapy, catalytic therapy, photodynamic therapy and radiotherapy have not succeeded in reverting the outcome of the disease to any drastic extent, has made researchers investigate alternative treatment options. The extensive repertoire of traditional medicinal knowledge systems from various parts of the world are being re-investigated for their healing properties. This study progresses in the direction of identifying component(s) from <it>Nigella sativa </it>with anti cancer acitivity. In the present study we investigated the efficacy of Organic extracts of <it>Nigella sativa </it>seed powder for its clonogenic inhibition and induction of apoptosis in HeLa cancer cell.</p> <p>Results</p> <p>Methanolic, n-Hexane and chloroform extracts of <it>Nigella sativa </it>seedz effectively killed HeLa cells. The IC<sub>50 </sub>values of methanolic, n-hexane, and chloroform extracts of <it>Nigella sativa </it>were 2.28 μg/ml, 2.20 μg/ml and 0.41 ng/ml, respectively. All three extracts induced apoptosis in HeLa cells. Apoptosis was confirmed by DNA fragmentation, western blot and terminal transferase-mediated dUTP-digoxigenin-end labeling (TUNEL) assay.</p> <p>Conclusion</p> <p>Western Blot and TUNEL results suggested that <it>Nigella sativa </it>seed extracts regulated the expression of pro- and anti- apoptotic genes, indicating its possible development as a potential therapeutic agent for cervical cancer upon further investigation.</p

    Differential Expression Profile and Genetic Variants of MicroRNAs Sequences in Breast Cancer Patients

    Get PDF
    The technology available for cancer diagnosis and prognosis is not yet satisfactory at the molecular level, and requires further improvements. Micro RNAs (miRNAs) have been recently reported as useful biomarkers in diseases including cancer. We performed a miRNA expression profiling study using peripheral blood from breast cancer patients to detect and identify characteristic patterns. A total of 100 breast cancer patients and 89 healthy patients were recruited for miRNA genotyping and expression profiling. We found that hs-miR-196a2 in premenopausal patients, and hs-miR-499, hs-miR-146a and hs-miR-196a2 in postmenopausal patients, may discriminate breast cancer patients from healthy individuals. In addition, we found a significant association between two microRNA polymorphisms (hs-miR-196a2 and hs-miR-499) and breast cancer risk. However, no significant association between the hs-miR-146a gene and breast cancer risk was found. In summary, the study demonstrates that peripheral blood miRNAs and their expression and genotypic profiles can be developed as biomarkers for early diagnosis and prognosis of breast cancer

    Affinity of estrogens for human progesterone receptor A and B monomers and risk of breast cancer: a comparative molecular modeling study

    No full text
    Tarique N Hasan1,4, Leena Grace B2, Tariq A Masoodi3,5, Gowhar Shafi4 , Ali A. Alshatwi4, P Sivashanmugham31Department of Biotechnology, Bharathiar University, Coimbator, TN, India; 2Department of Biotechnology, V. M. K. V. College of Engineering, Salem, TN, India; 3Department of Bioinformatics, Jamal Mohammed College, Bharathidasan University, Tiruchirappalli, India; 4Molecular Cancer Biology Laboratory, Department of Food Science and Nutrition, College of Food and Agricultural Sciences; 5Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Saudi ArabiaBackground: The human progesterone receptor (hPR) belongs to the steroid receptor family. It may be found as monomers (A and B) and or as a dimer (AB). hPR is regarded as the prognostic biomarker for breast cancer. In a cellular dimer system, AB is the dominant species in most cases. However, when a cell coexpresses all three isoforms of hPR, the complexity of the action of this receptor increases. For example, hPR A suppresses the activity of hPR B, and the ratio of hPR A to hPR B may determine the physiology of a breast tumor. Also, persistent exposure of hPRs to nonendogenous ligands is a common risk factor for breast cancer. Hence we aimed to study progesterone and some nonendogenous ligand interactions with hPRs and their molecular docking.Methods and results: A pool of steroid derivatives, namely, progesterone, cholesterol, testosterone, testolectone, estradiol, estrone, norethindrone, exemestane, and norgestrel, was used for this in silico study. Dockings were performed on AutoDock 4.2. We found that estrogens, including estradiol and estrone, had a higher affinity for hPR A and B monomers in comparison with the dimer, hPR AB, and that of the endogenous progesterone ligand. hPR A had a higher affinity to all the docked ligands than hPR B.Conclusion: This study suggests that the exposure of estrogens to hPR A as well as hPR B, and more particularly to hPR A alone, is a risk factor for breast cancer.Keywords: human progesterone receptor, breast cancer, steroid derivatives, estrogens, molecular dockin

    Identification of functional SNPs in BARD1 gene and in silico analysis of damaging SNPs: based on data procured from dbSNP database.

    Get PDF
    The BARD1 gene encodes for the BRCA1-associated RING domain (BARD1) protein. Germ line and somatic mutations in BARD1 are found in sporadic breast, ovarian and uterine cancers. There is a plethora of single nucleotide polymorphisms (SNPs) which may or may not be involved in the onset of female cancers. Hence, before planning a larger population study, it is advisable to sort out the possible functional SNPs. To accomplish this goal, data available in the dbSNP database and different computer programs can be used. To the best of our knowledge, until now there has been no such study on record for the BARD1 gene. Therefore, this study was undertaken to find the functional nsSNPs in BARD1.2.85% of all SNPs in the dbSNP database were present in the coding regions. SIFT predicted 11 out of 50 nsSNPs as not tolerable and PolyPhen assessed 27 out of 50 nsSNPs as damaging. FastSNP revealed that the rs58253676 SNP in the 3' UTR may have splicing regulator and enhancer functions. In the 5' UTR, rs17489363 and rs17426219 may alter the transcriptional binding site. The intronic region SNP rs67822872 may have a medium-high risk level. The protein structures 1JM7, 3C5R and 2NTE were predicted by PDBSum and shared 100% similarity with the BARD1 amino acid sequence. Among the predicted nsSNPs, rs4986841, rs111367604, rs13389423 and rs139785364 were identified as deleterious and damaging by the SIFT and PolyPhen programs. Additionally, I-Mutant showed a decrease in stability for these nsSNPs upon mutation. Finally, the ExPASy-PROSIT program revealed that the predicted deleterious mutations are contained in the ankyrin ring and BRCT domains.Using the available bioinformatics tools and the data present in the dbSNP database, the four nsSNPs, rs4986841, rs111367604, rs13389423 and rs139785364, were identified as deleterious, reducing the protein stability of BARD1. Hence, these SNPs can be used for the larger population-based studies of female cancers

    The available PDB structure for the BARD1 gene with a similarity (100%) with BARD1 FASTA sequence at PDBsum.

    No full text
    <p>The available PDB structure for the BARD1 gene with a similarity (100%) with BARD1 FASTA sequence at PDBsum.</p
    corecore