3 research outputs found

    Construction of Thermophilic Xylanase and Its Structural Analysis

    No full text
    The glycoside hydrolase family 11 xylanase has been utilized in a wide variety of industrial applications, from food processing to kraft pulp bleaching. Thermostability enhances the economic value of industrial enzymes by making them more robust. Recently, we determined the crystal structure of an endo-β-1,4-xylanase (GH11) from mesophilic <i>Talaromyces cellulolyticus</i>, named XylC. Ligand-free XylC exists to two conformations (open and closed forms). We found that the “closed” structure possessed an unstable region within the N-terminal region far from the active site. In this study, we designed the thermostable xylanase by the structure-based site-directed mutagenesis on the N-terminal region. In total, nine mutations (S35C, N44H, Y61M, T62C, N63L, D65P, N66G, T101P, and S102N) and an introduced disulfide bond of the enzyme contributed to the improvement in thermostability. By combining the mutations, we succeeded in constructing a mutant for which the melting temperature was partially additively increased by >20 °C (measured by differential scanning calorimetry) and the activity was additively enhanced at elevated temperatures, without loss of the original specific activity. The crystal structure of the most thermostable mutant was determined at 2.0 Å resolution to elucidate the structural basis of thermostability. From the crystal structure of the mutant, it was revealed that the formation of a disulfide bond induces new C–C contacts and a conformational change in the N-terminus. The resulting induced conformational change in the N-terminus is key for stabilizing this region and for constructing thermostable mutants without compromising the activity

    Hyperstabilization of Tetrameric <i>Bacillus</i> sp. TB-90 Urate Oxidase by Introducing Disulfide Bonds through Structural Plasticity

    No full text
    <i>Bacillus</i> sp. TB-90 urate oxidase (BTUO) is one of the most thermostable homotetrameric enzymes. We previously reported [Hibi, T., et al. (2014) <i>Biochemistry</i> <i>53</i>, 3879–3888] that specific binding of a sulfate anion induced thermostabilization of the enzyme, because the bound sulfate formed a salt bridge with two Arg298 residues, which stabilized the packing between two β-barrel dimers. To extensively characterize the sulfate-binding site, Arg298 was substituted with cysteine by site-directed mutagenesis. This substitution markedly increased the protein melting temperature by ∼20 °C compared with that of the wild-type enzyme, which was canceled by reduction with dithiothreitol. Calorimetric analysis of the thermal denaturation suggested that the hyperstabilization resulted from suppression of the dissociation of the tetramer into the two homodimers. The crystal structure of R298C at 2.05 Å resolution revealed distinct disulfide bond formation between the symmetrically related subunits via Cys298, although the C<sub>β</sub> distance between Arg298 residues of the wild-type enzyme (5.4 Å apart) was too large to predict stable formation of an engineered disulfide cross-link. Disulfide bonding was associated with local disordering of interface loop II (residues 277–300), which suggested that the structural plasticity of the loop allowed hyperstabilization by disulfide formation. Another conformational change in the C-terminal region led to intersubunit hydrogen bonding between Arg7 and Asp312, which probably promoted mutant thermostability. Knowledge of the disulfide linkage of flexible loops at the subunit interface will help in the development of new strategies for enhancing the thermostabilization of multimeric proteins

    Seven Cysteine-Deficient Mutants Depict the Interplay between Thermal and Chemical Stabilities of Individual Cysteine Residues in Mitogen-Activated Protein Kinase c‑Jun N‑Terminal Kinase 1

    No full text
    Intracellular proteins can have free cysteines that may contribute to their structure, function, and stability; however, free cysteines can lead to chemical instabilities in solution because of oxidation-driven aggregation. The MAP kinase, c-Jun N-terminal kinase 1 (JNK1), possesses seven free cysteines and is an important drug target for autoimmune diseases, cancers, and apoptosis-related diseases. To characterize the role of cysteine residues in the structure, function, and stability of JNK1, we prepared and evaluated wild-type JNK1 and seven cysteine-deficient JNK1 proteins. The nonreduced sodium dodecyl sulfate–polyacrylamide gel electrophoresis experiments showed that the chemical stability of JNK1 increased as the number of cysteines decreased. The contribution of each cysteine residue to biological function and thermal stability was highly susceptible to the environment surrounding the particular cysteine mutation. The mutations of solvent-exposed cysteine to serine did not influence biological function and increased the thermal stability. The mutation of the accessible cysteine involved in the hydrophobic pocket did not affect biological function, although a moderate thermal destabilization was observed. Cysteines in the loosely assembled hydrophobic environment moderately contributed to thermal stability, and the mutations of these cysteines had a negligible effect on enzyme activity. The other cysteines are involved in the tightly filled hydrophobic core, and mutation of these residues was found to correlate with thermal stability and enzyme activity. These findings about the role of cysteine residues should allow us to obtain a stable JNK1 and thus promote the discovery of potent JNK1 inhibitors
    corecore