24 research outputs found

    Randomization in Laboratory Procedure Is Key to Obtaining Reproducible Microarray Results

    Get PDF
    The quality of gene expression microarray data has improved dramatically since the first arrays were introduced in the late 1990s. However, the reproducibility of data generated at multiple laboratory sites remains a matter of concern, especially for scientists who are attempting to combine and analyze data from public repositories. We have carried out a study in which a common set of RNA samples was assayed five times in four different laboratories using Affymetrix GeneChip arrays. We observed dramatic differences in the results across laboratories and identified batch effects in array processing as one of the primary causes for these differences. When batch processing of samples is confounded with experimental factors of interest it is not possible to separate their effects, and lists of differentially expressed genes may include many artifacts. This study demonstrates the substantial impact of sample processing on microarray analysis results and underscores the need for randomization in the laboratory as a means to avoid confounding of biological factors with procedural effects

    Randomization in Laboratory Procedure Is Key to Obtaining Reproducible Microarray Results

    Get PDF
    The quality of gene expression microarray data has improved dramatically since the first arrays were introduced in the late 1990s. However, the reproducibility of data generated at multiple laboratory sites remains a matter of concern, especially for scientists who are attempting to combine and analyze data from public repositories. We have carried out a study in which a common set of RNA samples was assayed five times in four different laboratories using Affymetrix GeneChip arrays. We observed dramatic differences in the results across laboratories and identified batch effects in array processing as one of the primary causes for these differences. When batch processing of samples is confounded with experimental factors of interest it is not possible to separate their effects, and lists of differentially expressed genes may include many artifacts. This study demonstrates the substantial impact of sample processing on microarray analysis results and underscores the need for randomization in the laboratory as a means to avoid confounding of biological factors with procedural effects

    The NORAD lncRNA assembles a topoisomerase complex critical for genome stability

    Get PDF
    The human genome contains thousands of long non-coding RNAs, but specific biological functions and biochemical mechanisms have been discovered for only about a dozen. A specific long non-coding RNA—non-coding RNA activated by DNA damage (NORAD)—has recently been shown to be required for maintaining genomic stability, but its molecular mechanism is unknown. Here we combine RNA antisense purification and quantitative mass spectrometry to identify proteins that directly interact with NORAD in living cells. We show that NORAD interacts with proteins involved in DNA replication and repair in steady-state cells and localizes to the nucleus upon stimulation with replication stress or DNA damage. In particular, NORAD interacts with RBMX, a component of the DNA-damage response, and contains the strongest RBMX-binding site in the transcriptome. We demonstrate that NORAD controls the ability of RBMX to assemble a ribonucleoprotein complex—which we term NORAD-activated ribonucleoprotein complex 1 (NARC1)—that contains the known suppressors of genomic instability topoisomerase I (TOP1), ALYREF and the PRPF19–CDC5L complex. Cells depleted for NORAD or RBMX display an increased frequency of chromosome segregation defects, reduced replication-fork velocity and altered cell-cycle progression—which represent phenotypes that are mechanistically linked to TOP1 and PRPF19–CDC5L function. Expression of NORAD in trans can rescue defects caused by NORAD depletion, but rescue is significantly impaired when the RBMX-binding site in NORAD is deleted. Our results demonstrate that the interaction between NORAD and RBMX is important for NORAD function, and that NORAD is required for the assembly of the previously unknown topoisomerase complex NARC1, which contributes to maintaining genomic stability. In addition, we uncover a previously unknown function for long non-coding RNAs in modulating the ability of an RNA-binding protein to assemble a higher-order ribonucleoprotein complex

    The NORAD lncRNA assembles a topoisomerase complex critical for genome stability

    Get PDF
    The human genome contains thousands of long non-coding RNAs, but specific biological functions and biochemical mechanisms have been discovered for only about a dozen. A specific long non-coding RNA—non-coding RNA activated by DNA damage (NORAD)—has recently been shown to be required for maintaining genomic stability, but its molecular mechanism is unknown. Here we combine RNA antisense purification and quantitative mass spectrometry to identify proteins that directly interact with NORAD in living cells. We show that NORAD interacts with proteins involved in DNA replication and repair in steady-state cells and localizes to the nucleus upon stimulation with replication stress or DNA damage. In particular, NORAD interacts with RBMX, a component of the DNA-damage response, and contains the strongest RBMX-binding site in the transcriptome. We demonstrate that NORAD controls the ability of RBMX to assemble a ribonucleoprotein complex—which we term NORAD-activated ribonucleoprotein complex 1 (NARC1)—that contains the known suppressors of genomic instability topoisomerase I (TOP1), ALYREF and the PRPF19–CDC5L complex. Cells depleted for NORAD or RBMX display an increased frequency of chromosome segregation defects, reduced replication-fork velocity and altered cell-cycle progression—which represent phenotypes that are mechanistically linked to TOP1 and PRPF19–CDC5L function. Expression of NORAD in trans can rescue defects caused by NORAD depletion, but rescue is significantly impaired when the RBMX-binding site in NORAD is deleted. Our results demonstrate that the interaction between NORAD and RBMX is important for NORAD function, and that NORAD is required for the assembly of the previously unknown topoisomerase complex NARC1, which contributes to maintaining genomic stability. In addition, we uncover a previously unknown function for long non-coding RNAs in modulating the ability of an RNA-binding protein to assemble a higher-order ribonucleoprotein complex

    A large peptidome dataset improves HLA class I epitope prediction across most of the human population

    Full text link
    Published in final edited form as: Nat Biotechnol. 2020 February ; 38(2): 199–209. doi:10.1038/s41587-019-0322-9.Prediction of HLA epitopes is important for the development of cancer immunotherapies and vaccines. However, current prediction algorithms have limited predictive power, in part because they were not trained on high-quality epitope datasets covering a broad range of HLA alleles. To enable prediction of endogenous HLA class I-associated peptides across a large fraction of the human population, we used mass spectrometry to profile >185,000 peptides eluted from 95 HLA-A, -B, -C and -G mono-allelic cell lines. We identified canonical peptide motifs per HLA allele, unique and shared binding submotifs across alleles and distinct motifs associated with different peptide lengths. By integrating these data with transcript abundance and peptide processing, we developed HLAthena, providing allele-and-length-specific and pan-allele-pan-length prediction models for endogenous peptide presentation. These models predicted endogenous HLA class I-associated ligands with 1.5-fold improvement in positive predictive value compared with existing tools and correctly identified >75% of HLA-bound peptides that were observed experimentally in 11 patient-derived tumor cell lines.P01 CA229092 - NCI NIH HHS; P50 CA101942 - NCI NIH HHS; T32 HG002295 - NHGRI NIH HHS; T32 CA009172 - NCI NIH HHS; U24 CA224331 - NCI NIH HHS; R21 CA216772 - NCI NIH HHS; R01 CA155010 - NCI NIH HHS; U01 CA214125 - NCI NIH HHS; T32 CA207021 - NCI NIH HHS; R01 HL103532 - NHLBI NIH HHS; U24 CA210986 - NCI NIH HHSAccepted manuscrip

    Identification of novel targets for breast cancer by exploring gene switches on a genome scale

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An important feature that emerges from analyzing gene regulatory networks is the "switch-like behavior" or "bistability", a dynamic feature of a particular gene to preferentially toggle between two steady-states. The state of gene switches plays pivotal roles in cell fate decision, but identifying switches has been difficult. Therefore a challenge confronting the field is to be able to systematically identify gene switches.</p> <p>Results</p> <p>We propose a top-down mining approach to exploring gene switches on a genome-scale level. Theoretical analysis, proof-of-concept examples, and experimental studies demonstrate the ability of our mining approach to identify bistable genes by sampling across a variety of different conditions. Applying the approach to human breast cancer data identified genes that show bimodality within the cancer samples, such as estrogen receptor (ER) and ERBB2, as well as genes that show bimodality between cancer and non-cancer samples, where tumor-associated calcium signal transducer 2 (TACSTD2) is uncovered. We further suggest a likely transcription factor that regulates TACSTD2.</p> <p>Conclusions</p> <p>Our mining approach demonstrates that one can capitalize on genome-wide expression profiling to capture dynamic properties of a complex network. To the best of our knowledge, this is the first attempt in applying mining approaches to explore gene switches on a genome-scale, and the identification of TACSTD2 demonstrates that single cell-level bistability can be predicted from microarray data. Experimental confirmation of the computational results suggest TACSTD2 could be a potential biomarker and attractive candidate for drug therapy against both ER+ and ER- subtypes of breast cancer, including the triple negative subtype.</p

    Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms

    Get PDF
    Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains ∼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. Video Abstract [Figure presented] Keywords: type 2 diabetes (T2D); genetics; disease mechanism; SLC16A11; MCT11; solute carrier (SLC); monocarboxylates; fatty acid metabolism; lipid metabolism; precision medicin

    The lncRNA lincNMR regulates nucleotide metabolism via a YBX1 - RRM2 axis in cancer

    No full text
    Despite some well-characterized functions in cancer, the impact of most long non-coding RNAs remains unknown. Here, the authors discover the lncRNA lincNMR which is upregulated in cancer and drives cell proliferation by interacting with YBX1 and controlling nucleotide metabolism

    The NORAD lncRNA assembles a topoisomerase complex critical for genome stability

    No full text
    The human genome contains thousands of long non-coding RNAs1, but specific biological functions and biochemical mechanisms have been discovered for only about a dozen2–7. A specific long non-coding RNA—non-coding RNA activated by DNA damage (NORAD)—has recently been shown to be required for maintaining genomic stability8, but its molecular mechanism is unknown. Here we combine RNA antisense purification and quantitative mass spectrometry to identify proteins that directly interact with NORAD in living cells. We show that NORAD interacts with proteins involved in DNA replication and repair in steady-state cells and localizes to the nucleus upon stimulation with replication stress or DNA damage. In particular, NORAD interacts with RBMX, a component of the DNA-damage response, and contains the strongest RBMX-binding site in the transcriptome. We demonstrate that NORAD controls the ability of RBMX to assemble a ribonucleoprotein complex—which we term NORAD-activated ribonucleoprotein complex 1 (NARC1)—that contains the known suppressors of genomic instability topoisomerase I (TOP1), ALYREF and the PRPF19–CDC5L complex. Cells depleted for NORAD or RBMX display an increased frequency of chromosome segregation defects, reduced replication-fork velocity and altered cell-cycle progression—which represent phenotypes that are mechanistically linked to TOP1 and PRPF19–CDC5L function. Expression of NORAD in trans can rescue defects caused by NORAD depletion, but rescue is significantly impaired when the RBMX-binding site in NORAD is deleted. Our results demonstrate that the interaction between NORAD and RBMX is important for NORAD function, and that NORAD is required for the assembly of the previously unknown topoisomerase complex NARC1, which contributes to maintaining genomic stability. In addition, we uncover a previously unknown function for long non-coding RNAs in modulating the ability of an RNA-binding protein to assemble a higher-order ribonucleoprotein complex
    corecore