33,180 research outputs found
Mixed population Minority Game with generalized strategies
We present a quantitative theory, based on crowd effects, for the market
volatility in a Minority Game played by a mixed population. Below a critical
concentration of generalized strategy players, we find that the volatility in
the crowded regime remains above the random coin-toss value regardless of the
"temperature" controlling strategy use. Our theory yields good agreement with
numerical simulations.Comment: Revtex file + 3 figure
From market games to real-world markets
This paper uses the development of multi-agent market models to present a
unified approach to the joint questions of how financial market movements may
be simulated, predicted, and hedged against. We examine the effect of different
market clearing mechanisms and show that an out-of-equilibrium clearing process
leads to dynamics that closely resemble real financial movements. We then show
that replacing the `synthetic' price history used by these simulations with
data taken from real financial time-series leads to the remarkable result that
the agents can collectively learn to identify moments in the market where
profit is attainable. We then employ the formalism of Bouchaud and Sornette in
conjunction with agent based models to show that in general risk cannot be
eliminated from trading with these models. We also show that, in the presence
of transaction costs, the risk of option writing is greatly increased. This
risk, and the costs, can however be reduced through the use of a delta-hedging
strategy with modified, time-dependent volatility structure.Comment: Presented at APFA2 (Liege) July 2000. Proceedings: Eur. Phys. J. B
Latex file + 10 .ps figs. [email protected]
Deterministic Dynamics in the Minority Game
The Minority Game (MG) behaves as a stochastically perturbed deterministic
system due to the coin-toss invoked to resolve tied strategies. Averaging over
this stochasticity yields a description of the MG's deterministic dynamics via
mapping equations for the strategy score and global information. The
strategy-score map contains both restoring-force and bias terms, whose
magnitudes depend on the game's quenched disorder. Approximate analytical
expressions are obtained and the effect of `market impact' discussed. The
global-information map represents a trajectory on a De Bruijn graph. For small
quenched disorder, an Eulerian trail represents a stable attractor. It is shown
analytically how anti-persistence arises. The response to perturbations and
different initial conditions are also discussed.Comment: 16 pages, 5 figure
Crowd-Anticrowd Theory of Multi-Agent Market Games
We present a dynamical theory of a multi-agent market game, the so-called
Minority Game (MG), based on crowds and anticrowds. The time-averaged version
of the dynamical equations provides a quantitatively accurate, yet intuitively
simple, explanation for the variation of the standard deviation (`volatility')
in MG-like games. We demonstrate this for the basic MG, and the MG with
stochastic strategies. The time-dependent equations themselves reproduce the
essential dynamics of the MG.Comment: Presented at APFA2 (Liege) July 2000. Proceedings: Eur.Phys.J. B
[email protected]
What is the excess risk of infertility in women after genital chlamydia infection? A systematic review of the evidence
Methods: Twelve databases were searched, limited to peer-reviewed literature published from January 1970 to September 2007. Conference abstracts and reference lists from reviews published since 2000 and from key articles were hand-searched. Studies were selected for review if they met the following criteria: (1) the study population comprised women of child-bearing age (defined as 15–45 years) and incorporated a comparison group of women documented as "chlamydia negative"; (2) the study outcomes included either infertility or successful pregnancy; and (3) the study design was one of the following: cohort, randomised controlled trial, "before and after" study, screening trial and systematic review. Studies were excluded if they described genital infections that either did not include Chlamydia trachomatis or described genital chlamydial co-infection, in which no data were available for C trachomatis infection alone.
Results: 3349 studies were identified by the search. One study satisfied the inclusion criteria, a longitudinal investigation measuring pregnancy rates in adolescent women with and without current chlamydial infection at baseline. That study reported no significant difference in subsequent pregnancy rates; however, it had serious methodological limitations, which restricted its conclusions.
Conclusions: This systematic review demonstrates the absence of valid evidence on the attributable risk of post-infective tubal factor infertility after genital chlamydial infection. The findings contribute empirical data to the growing debate surrounding previous assumptions about the natural history of chlamydial infection in women
The Two Phases of Galaxy Formation
Cosmological simulations of galaxy formation appear to show a two-phase
character with a rapid early phase at z>2 during which in-situ stars are formed
within the galaxy from infalling cold gas followed by an extended phase since
z<3 during which ex-situ stars are primarily accreted. In the latter phase
massive systems grow considerably in mass and radius by accretion of smaller
satellite stellar systems formed at quite early times (z>3) outside of the
virial radius of the forming central galaxy. These tentative conclusions are
obtained from high resolution re-simulations of 39 individual galaxies in a
full cosmological context with present-day virial halo masses ranging from 7e11
M_sun h^-1 < M_vir < 2.7e13 M_sun h^-1 and central galaxy masses between 4.5e10
M_sun h^-1 < M_* < 3.6e11 M_sun h^-1. The simulations include the effects of a
uniform UV background, radiative cooling, star formation and energetic feedback
from SNII. The importance of stellar accretion increases with galaxy mass and
towards lower redshift. In our simulations lower mass galaxies (M_* > 1.7e11 M_sun h^-1) assembly is dominated by accretion and
merging with about 80 per cent of the stars added by the present-day. In
general the simulated galaxies approximately double their mass since z=1. For
massive systems this mass growth is not accompanied by significant star
formation. The majority of the in-situ created stars is formed at z>2,
primarily out of cold gas flows. We recover the observational result of
archaeological downsizing, where the most massive galaxies harbor the oldest
stars. We find that this is not in contradiction with hierarchical structure
formation. Most stars in the massive galaxies are formed early on in smaller
structures, the galaxies themselves are assembled late.Comment: 13 pages, 13 figures, accepted for publication in Ap
Directed Explicit Model Checking with HSF-SPIN
We present the explicit state model checker HSF-SPIN which is based on the model checker SPIN and its Promela modeling language. HSF-SPIN incorporates directed search algorithms for checking safety and a large class of LTL-specified liveness properties. We start off from the A* algorithm and define heuristics to accelerate the search into the direction of a specified failure situation. Next we propose an improved nested depth-first search algorithm that exploits the structure of Promela Never-Claims. As a result of both improvements, counterexamples will be shorter and the explored part of the state space will be smaller than with classical approaches, allowing to analyze larger state spaces. We evaluate the impact of the new heuristics and algorithms on a set of protocol models, some of which are real-world industrial protocols
- …