47,728 research outputs found
Surface compositional mapping by spectral ratioing of ERTS-1 MSS data in the Wind River Basin and Range, Wyoming
The author has identified the following significant results. ERTS data collected in August and October 1972 were processed on digital and special purpose analog recognition computers using ratio enhancement and pattern recognition. Ratios of band-averaged laboratory reflectances of some minerals and rock types known to be in the scene compared favorably with ratios derived from the data by ratio normalization procedures. A single ratio display and density slice of the visible channels of ERTS MSS data, Channel 5/Channel 4 (R5,4), separated the Triassic Chugwater formation (redbeds) from other formations present and may have enhanced iron oxide minerals present at the surface in abundance. Comparison of data sets collected over the same area at two different times of the year by digital processing indicated that spectral variation due to environmental factors was reduced by ratio processing
Low-density series expansions for directed percolation IV. Temporal disorder
We introduce a model for temporally disordered directed percolation in which
the probability of spreading from a vertex , where is the time and
is the spatial coordinate, is independent of but depends on . Using
a very efficient algorithm we calculate low-density series for bond percolation
on the directed square lattice. Analysis of the series yields estimates for the
critical point and various critical exponents which are consistent with a
continuous change of the critical parameters as the strength of the disorder is
increased.Comment: 11 pages, 3 figure
Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal
We show that Coherent Population Oscillations effect allows to burn a narrow
spectral hole (26Hz) within the homogeneous absorption line of the optical
transition of an Erbium ion-doped crystal. The large dispersion of the index of
refraction associated with this hole permits to achieve a group velocity as low
as 2.7m/s with a ransmission of 40%. We especially benefit from the
inhomogeneous absorption broadening of the ions to tune both the transmission
coefficient, from 40% to 90%, and the light group velocity from 2.7m/s to
100m/s
A scalable readout system for a superconducting adiabatic quantum optimization system
We have designed, fabricated and tested an XY-addressable readout system that
is specifically tailored for the reading of superconducting flux qubits in an
integrated circuit that could enable adiabatic quantum optimization. In such a
system, the flux qubits only need to be read at the end of an adiabatic
evolution when quantum mechanical tunneling has been suppressed, thus
simplifying many aspects of the readout process. The readout architecture for
an -qubit adiabatic quantum optimization system comprises hysteretic dc
SQUIDs and rf SQUID latches controlled by bias lines. The
latching elements are coupled to the qubits and the dc SQUIDs are then coupled
to the latching elements. This readout scheme provides two key advantages:
First, the latching elements provide exceptional flux sensitivity that
significantly exceeds what may be achieved by directly coupling the flux qubits
to the dc SQUIDs using a practical mutual inductance. Second, the states of the
latching elements are robust against the influence of ac currents generated by
the switching of the hysteretic dc SQUIDs, thus allowing one to interrogate the
latching elements repeatedly so as to mitigate the effects of stochastic
switching of the dc SQUIDs. We demonstrate that it is possible to achieve
single qubit read error rates of with this readout scheme. We have
characterized the system-level performance of a 128-qubit readout system and
have measured a readout error probability of in the presence
of optimal latching element bias conditions.Comment: Updated for clarity, final versio
Effects of surfaces on resistor percolation
We study the effects of surfaces on resistor percolation at the instance of a
semi-infinite geometry. Particularly we are interested in the average
resistance between two connected ports located on the surface. Based on general
grounds as symmetries and relevance we introduce a field theoretic Hamiltonian
for semi-infinite random resistor networks. We show that the surface
contributes to the average resistance only in terms of corrections to scaling.
These corrections are governed by surface resistance exponents. We carry out
renormalization group improved perturbation calculations for the special and
the ordinary transition. We calculate the surface resistance exponents
\phi_{\mathcal S \mathnormal} and \phi_{\mathcal S \mathnormal}^\infty for
the special and the ordinary transition, respectively, to one-loop order.Comment: 19 pages, 3 figure
Directed Percolation with a Wall or Edge
We examine the effects of introducing a wall or edge into a directed
percolation process. Scaling ansatzes are presented for the density and
survival probability of a cluster in these geometries, and we make the
connection to surface critical phenomena and field theory. The results of
previous numerical work for a wall can thus be interpreted in terms of surface
exponents satisfying scaling relations generalising those for ordinary directed
percolation. New exponents for edge directed percolation are also introduced.
They are calculated in mean-field theory and measured numerically in 2+1
dimensions.Comment: 14 pages, submitted to J. Phys.
EXISTENCE OF UNIQUE LIMITING PROBABILITY VECTORS IN STOCHASTIC PROCESSES WITH MULTIPLE TRANSITION MATRICES
Concepts associated with stochastic process containing multiple transition matricies are discussed. It is proved that under certain conditions, a process with m transition matrices has m unique limiting probability vectors. This result extends the notion of discrete Markov processes to problems with intrayear and interyear dynamics. An example using a large DP model illustrates the usefulness of the concepts developed to applied problems.Research Methods/ Statistical Methods,
- …