2 research outputs found

    Prototipe Model Prediksi Peluang Kejadian Hujan Menggunakan Metode Fuzzy Logic Tipe Mamdani Dan Sugeno

    Full text link
    – Study of weather prediction is a challenge that is always interesting to study. Although there was several methods of weather prediction, but the results have not provided good accuracy. The use of fuzzy logic has been proven by scientists to be applied to the expression of uncertainty, it is not clear and qualitative from a system. This method produces lower error percentage. This study aims to develop opportunities rainfall prediction algorithm using fuzzy logic type Mamdani and Sugeno, and compare the model results to determine the accuracy of the prediction results. The data are input parameters in the scale meteorological processes that influence the occurrence of rain. Parameters are classified into several categories to make it easier to make the rules (IF-THEN rules). The model was built and the results were tested in the wet season, dry season and transition season with observational data. Results of verification states that Mamdani type is more reliable as a weather prediction models with the accuracy percentage of 77%, 80% and 84%. While the percentage of accuracy obtained Sugeno type 32%, 63% and 42%. Keyword : Fuzzy Logic, Weather Prediction, Mamdani, Sugeno, Meteorology Scal

    Pendistribusian Data Numerical Weather Prediction (Nwp) dengan Grads Data Server

    Full text link
    Penggunaan software ‘Numerical Weather Prediction' (NWP) diperlukan untuk memberikan informasi cuaca harian secara spasial beresolusi tinggi. Data keluaran produk-produk NWP mempunyai ukuran yang sangat besar sehingga sulit dipertukarkan untuk dapat ditampilkan dalam bentuk peta cuaca maupun untuk analisis lebih lanjut. Pemanfaatan teknologi ‘online storage' menggunakan GrADS Data Server (GDS) merupakan salah satu solusi untuk mendistribusikan data-data NWP yang berukuran besar. Selain menyediakan koneksi yang stabil dan aman, GDS juga dapat membaca berbagai format data cuaca seperti GRIB, Binary, NetCDF, HDF, BUFR, dan GrADS station data. Walaupun diperlukan keahlian tambahan untuk mengakses data tersebut, tetapi penggunaannya sebanding dengan kemudahan akses serta kemungkinan analisa data untuk keperluan lebih lanjut
    corecore