6 research outputs found

    Le Courrier

    No full text
    11 juillet 18241824/07/11 (A0,N193)

    MOESM7 of An efficient transient expression system for gene function analysis in rose

    No full text
    Additional file 7: Fig. S6. The outline of multiple BP and LR reactions to generate expression vectors for protein-protein interaction assay. PCR primers were designed to include 22- and 25-bp attB and attBr sites followed by at least 18 to 25 bp of gene-specific sequences, then the BP reactions were performed with PCR products and corresponding donor vector pDONR221 P1-P4, pDONR221 P4r-P3r, and pDONR221 P3-P2 to generate pENTR vectors L1-35S-L4, R4-RoKSN-R3, R4-RoFT-R3, L3-LUC-N-L2, and L3-LUC-C-L2. Multiple LR reactions were subsequently executed to construct the expression plasmids 35S:RoKSN:LUC-N, 35S:RoFT:LUC-C and 35S:RoFD:LUC-C by using pB7WG as destination vector

    Nonlinear Boost of Optical Angular Momentum Selectivity by Hybrid Nanolaser Circuits

    No full text
    Selective control of light is essential for optical science and technology, with numerous applications. However, optical selectivity in the angular momentum of light has been quite limited, remaining constant by increasing the incident light power on previous passive optical devices. Here, we demonstrate a nonlinear boost of optical selectivity in both the spin and orbital angular momentum of light through near-field selective excitation of single-mode nanolasers. Our designed hybrid nanolaser circuits consist of plasmonic metasurfaces and individually placed perovskite nanowires, enabling subwavelength focusing of angular-momentum-distinctive plasmonic fields and further selective excitation of nanolasers in nanowires. The optically selected nanolaser with a nonlinear increase of light emission greatly enhances the baseline optical selectivity offered by the metasurface from about 0.4 up to near unity. Our demonstrated hybrid nanophotonic platform may find important applications in all-optical logic gates and nanowire networks, ultrafast optical switches, nanophotonic detectors, and on-chip optical and quantum information processing

    Nonlinear Boost of Optical Angular Momentum Selectivity by Hybrid Nanolaser Circuits

    No full text
    Selective control of light is essential for optical science and technology, with numerous applications. However, optical selectivity in the angular momentum of light has been quite limited, remaining constant by increasing the incident light power on previous passive optical devices. Here, we demonstrate a nonlinear boost of optical selectivity in both the spin and orbital angular momentum of light through near-field selective excitation of single-mode nanolasers. Our designed hybrid nanolaser circuits consist of plasmonic metasurfaces and individually placed perovskite nanowires, enabling subwavelength focusing of angular-momentum-distinctive plasmonic fields and further selective excitation of nanolasers in nanowires. The optically selected nanolaser with a nonlinear increase of light emission greatly enhances the baseline optical selectivity offered by the metasurface from about 0.4 up to near unity. Our demonstrated hybrid nanophotonic platform may find important applications in all-optical logic gates and nanowire networks, ultrafast optical switches, nanophotonic detectors, and on-chip optical and quantum information processing

    Nonlinear Boost of Optical Angular Momentum Selectivity by Hybrid Nanolaser Circuits

    No full text
    Selective control of light is essential for optical science and technology, with numerous applications. However, optical selectivity in the angular momentum of light has been quite limited, remaining constant by increasing the incident light power on previous passive optical devices. Here, we demonstrate a nonlinear boost of optical selectivity in both the spin and orbital angular momentum of light through near-field selective excitation of single-mode nanolasers. Our designed hybrid nanolaser circuits consist of plasmonic metasurfaces and individually placed perovskite nanowires, enabling subwavelength focusing of angular-momentum-distinctive plasmonic fields and further selective excitation of nanolasers in nanowires. The optically selected nanolaser with a nonlinear increase of light emission greatly enhances the baseline optical selectivity offered by the metasurface from about 0.4 up to near unity. Our demonstrated hybrid nanophotonic platform may find important applications in all-optical logic gates and nanowire networks, ultrafast optical switches, nanophotonic detectors, and on-chip optical and quantum information processing
    corecore