44 research outputs found

    Novel Y-chromosomal microdeletions associated with non-obstructive azoospermia uncovered by high throughput sequencing of sequence-tagged sites (STSs)

    Get PDF
    Y-chromosomal microdeletion (YCM) serves as an important genetic factor in non-obstructive azoospermia (NOA). Multiplex polymerase chain reaction (PCR) is routinely used to detect YCMs by tracing sequence-tagged sites (STSs) in the Y chromosome. Here we introduce a novel methodology in which we sequence 1,787 (post-filtering) STSs distributed across the entire male-specific Y chromosome (MSY) in parallel to uncover known and novel YCMs. We validated this approach with 766 Chinese men with NOA and 683 ethnically matched healthy individuals and detected 481 and 98 STSs that were deleted in the NOA and control group, representing a substantial portion of novel YCMs which significantly influenced the functions of spermatogenic genes. The NOA patients tended to carry more and rarer deletions that were enriched in nearby intragenic regions. Haplogroup O2* was revealed to be a protective lineage for NOA, in which the enrichment of b1/b3 deletion in haplogroup C was also observed. In summary, our work provides a new high-resolution portrait of deletions in the Y chromosome.National Key Scientific Program of China [2011CB944303]; National Nature Science Foundation of China [31271244, 31471344]; Promotion Program for Shenzhen Key Laboratory [CXB201104220045A]; Shenzhen Project of Science and Technology [JCYJ20130402113131202, JCYJ20140415162543017]SCI(E)[email protected]; [email protected]; [email protected]

    Novel loci and pathways significantly associated with longevity

    Get PDF
    Only two genome-wide significant loci associated with longevity have been identified so far, probably because of insufficient sample sizes of centenarians, whose genomes may harbor genetic variants associated with health and longevity. Here we report a genome-wide association study (GWAS) of Han Chinese with a sample size 2.7 times the largest previously published GWAS on centenarians. We identified 11 independent loci associated with longevity replicated in Southern-Northern regions of China, including two novel loci (rs2069837-IL6; rs2440012-ANKRD20A9P) with genome-wide significance and the rest with suggestive significance (P < 3.65 × 10(−5)). Eight independent SNPs overlapped across Han Chinese, European and U.S. populations, and APOE and 5q33.3 were replicated as longevity loci. Integrated analysis indicates four pathways (starch, sucrose and xenobiotic metabolism; immune response and inflammation; MAPK; calcium signaling) highly associated with longevity (P ≤ 0.006) in Han Chinese. The association with longevity of three of these four pathways (MAPK; immunity; calcium signaling) is supported by findings in other human cohorts. Our novel finding on the association of starch, sucrose and xenobiotic metabolism pathway with longevity is consistent with the previous results from Drosophilia. This study suggests protective mechanisms including immunity and nutrient metabolism and their interactions with environmental stress play key roles in human longevity

    Modeling the Heating Dynamics of a Semiconductor Bridge Initiator with Deep Neural Network

    No full text
    A semiconductor bridge (SCB) is an ignition device that provides a safe and efficient method widely used in civilian and military fields. The heating process of an SCB under electrical stimulation has a wide range of applications owing to its unique energy release process. However, the temperature variation of an SCB is challenging to obtain, both experimentally because of the rapid reaction on a microscale and with simulation due to its high demand in nonlinear calculations. In this study, we propose deep learning (DL) approach to study the electrothermal-coupled multi-physical heating process of the SCB initiator. We generated training data with multi-physics simulation (MPS), producing surface temperature distributions of SCBs under different voltages. The model was then trained with partial data in this database and evaluated on a separate test set. A generative adversarial network (GAN) with a customized loss function was used for modeling point-wise temperature dynamics. In the test set, our proposed method can predict the temperature distribution of an SCB under different voltages with high accuracy of over 0.9 during the heating process. We reduced the computation time by several orders of magnitude by replacing MPS with a deep neural network

    Aligner treatment: patient experience and influencing factors

    No full text

    Characteristics of Hepatitis B virus integration and mechanism of inducing chromosome translocation

    No full text
    Abstract Hepatitis B virus (HBV) integration is closely associated with the onset and progression of tumors. This study utilized the DNA of 27 liver cancer samples for high-throughput Viral Integration Detection (HIVID), with the overarching goal of detecting HBV integration. KEGG pathway analysis of breakpoints was performed using the ClusterProfiler software. The breakpoints were annotated using the latest ANNOVAR software. We identified 775 integration sites and detected two new hotspot genes for virus integration, N4BP1 and WASHP, along with 331 new genes. Furthermore, we conducted a comprehensive analysis to determine the critical impact pathways of virus integration by combining our findings with the results of three major global studies on HBV integration. Meanwhile, we found common characteristics of virus integration hotspots among different ethnic groups. To specify the direct impact of virus integration on genomic instability, we explained the causes of inversion and the frequent occurrence of translocation due to HBV integration. This study detected a series of hotspot integration genes and specified common characteristics of critical hotspot integration genes. These hotspot genes are universal across different ethnic groups, providing an effective target for better research on the pathogenic mechanism. We also demonstrated more comprehensive key pathways affected by HBV integration and elucidated the mechanism for inversion and frequent translocation events due to virus integration. Apart from the great significance of the rule of HBV integration, the current study also provides valuable insights into the mechanism of virus integration

    Arrhythmia Classifier using Binarized Convolutional Neural Network for Resource-Constrained Devices

    Full text link
    Monitoring electrocardiogram signals is of great significance for the diagnosis of arrhythmias. In recent years, deep learning and convolutional neural networks have been widely used in the classification of cardiac arrhythmias. However, the existing neural network applied to ECG signal detection usually requires a lot of computing resources, which is not friendlyF to resource-constrained equipment, and it is difficult to realize real-time monitoring. In this paper, a binarized convolutional neural network suitable for ECG monitoring is proposed, which is hardware-friendly and more suitable for use in resource-constrained wearable devices. Targeting the MIT-BIH arrhythmia database, the classifier based on this network reached an accuracy of 95.67% in the five-class test. Compared with the proposed baseline full-precision network with an accuracy of 96.45%, it is only 0.78% lower. Importantly, it achieves 12.65 times the computing speedup, 24.8 times the storage compression ratio, and only requires a quarter of the memory overhead.Comment: IEEE-CISCE 202
    corecore