48,339 research outputs found

    A global protocol for monitoring of coral bleaching

    Get PDF
    Coral bleaching and subsequent mortality represent a major threat to the future health and productivity of coral reefs. However a lack of reliable data on occurrence, severity and other characteristics of bleaching events hampers research on the causes and consequences of this important phenomenon. This article describes a global protocol for monitoring coral bleaching events, which addresses this problem and can be used by people with different levels of expertise and resources

    Structure, phase behavior and inhomogeneous fluid properties of binary dendrimer mixtures

    Get PDF
    The effective pair potentials between different kinds of dendrimers in solution can be well approximated by appropriate Gaussian functions. We find that in binary dendrimer mixtures the range and strength of the effective interactions depend strongly upon the specific dendrimer architecture. We consider two different types of dendrimer mixtures, employing the Gaussian effective pair potentials, to determine the bulk fluid structure and phase behavior. Using a simple mean field density functional theory (DFT) we find good agreement between theory and simulation results for the bulk fluid structure. Depending on the mixture, we find bulk fluid-fluid phase separation (macro-phase separation) or micro-phase separation, i.e., a transition to a state characterized by undamped periodic concentration fluctuations. We also determine the inhomogeneous fluid structure for confinement in spherical cavities. Again, we find good agreement between the DFT and simulation results. For the dendrimer mixture exhibiting micro-phase separation, we observe rather striking pattern formation under confinement.Comment: 8 pages, 10 figure

    Dynamic glass transition: bridging the gap between mode-coupling theory and the replica approach

    Full text link
    We clarify the relation between the ergodicity breaking transition predicted by mode-coupling theory and the so-called dynamic transition predicted by the static replica approach. Following Franz and Parisi [Phys. Rev. Lett. 79, 2486 (1997)], we consider a system of particles in a metastable state characterized by non-trivial correlations with a quenched configuration. We show that the assumption that in a metastable state particle currents vanish leads to an expression for the replica off-diagonal direct correlation function in terms of a replica off-diagonal static four-point correlation function. A factorization approximation for this function results in an approximate closure for the replica off-diagonal direct correlation function. The replica off-diagonal Ornstein-Zernicke equation combined with this closure coincides with the equation for the non-ergodicity parameter derived using the mode-coupling theory.Comment: revised version; to be published in EP

    A global protocol for monitoring of coral bleaching

    Get PDF
    Coral bleaching and subsequent mortality represent a major threat to the future health and productivity of coral reefs. However a lack of reliable data on occurrence, severity and other characteristics of bleaching events hampers research on the causes and consequences of this important phenomenon. This article describes a global protocol for monitoring coral bleaching events, which addresses this problem and can be used by people with different levels of expertise and resources.Coral reefs, Bleaching, Mortality, Monitoring

    Charcoal From Your Woodlot?

    Get PDF
    Use of charcoal for outdoor cooking has increased rapidly in the Midwest since World War II. Iowans used about 1 1/2 million pounds in 1955. And the increase is estimated at more than 30 percent per year

    Mobile particles in an immobile environment: Molecular Dynamics simulation of a binary Yukawa mixture

    Full text link
    Molecular dynamics computer simulations are used to investigate thedynamics of a binary mixture of charged (Yukawa) particles with a size-ratio of 1:5. We find that the system undergoes a phase transition where the large particles crystallize while the small particles remain in a fluid-like (delocalized) phase. Upon decreasing temperature below the transition, the small particles become increasingly localized on intermediate time scales. This is reflected in the incoherent intermediate scattering functions by the appearance of a plateau with a growing height. At long times, the small particles show a diffusive hopping motion. We find that these transport properties are related to structural correlations and the single-particle potential energy distribution of the small particles.Comment: 7 pages, 5 figure
    corecore