304 research outputs found

    Controlled epitaxial graphene growth within amorphous carbon corrals

    Full text link
    Structured growth of high quality graphene is necessary for technological development of carbon based electronics. Specifically, control of the bunching and placement of surface steps under epitaxial graphene on SiC is an important consideration for graphene device production. We demonstrate lithographically patterned evaporated amorphous carbon corrals as a method to pin SiC surface steps. Evaporated amorphous carbon is an ideal step-flow barrier on SiC due to its chemical compatibility with graphene growth and its structural stability at high temperatures, as well as its patternability. The amorphous carbon is deposited in vacuum on SiC prior to graphene growth. In the graphene furnace at temperatures above 1200^\circC, mobile SiC steps accumulate at these amorphous carbon barriers, forming an aligned step free region for graphene growth at temperatures above 1330^\circC. AFM imaging and Raman spectroscopy support the formation of quality step-free graphene sheets grown on SiC with the step morphology aligned to the carbon grid

    Wafer bonding solution to epitaxial graphene - silicon integration

    Full text link
    The development of graphene electronics requires the integration of graphene devices with Si-CMOS technology. Most strategies involve the transfer of graphene sheets onto silicon, with the inherent difficulties of clean transfer and subsequent graphene nano-patterning that degrades considerably the electronic mobility of nanopatterned graphene. Epitaxial graphene (EG) by contrast is grown on an essentially perfect crystalline (semi-insulating) surface, and graphene nanostructures with exceptional properties have been realized by a selective growth process on tailored SiC surface that requires no graphene patterning. However, the temperatures required in this structured growth process are too high for silicon technology. Here we demonstrate a new graphene to Si integration strategy, with a bonded and interconnected compact double-wafer structure. Using silicon-on-insulator technology (SOI) a thin monocrystalline silicon layer ready for CMOS processing is applied on top of epitaxial graphene on SiC. The parallel Si and graphene platforms are interconnected by metal vias. This method inspired by the industrial development of 3d hyper-integration stacking thin-film electronic devices preserves the advantages of epitaxial graphene and enables the full spectrum of CMOS processing.Comment: 15 pages, 7 figure

    Structured epitaxial graphene: growth and properties

    No full text
    graphene ; nano-structure ; electronic transport ; ballistic transportInternational audienceGraphene is generally considered to be a strong candidate to succeed silicon as an electronic material. However, to date, it actually has not yet demonstrated capabilities that exceed standard semiconducting materials. Currently demonstrated viable graphene devices are essentially limited to micron size ultrahigh frequency analog field effect transistors and quantum Hall effect devices for metrology. Nanoscopically patterned graphene tends to have disordered edges which severely reduce mobilities thereby obviating its advantage over other materials. Here we show that graphene grown on structured silicon carbide surfaces overcomes the edge roughness and promises to provide an inroad into nanoscale patterning of graphene. We show that high quality ribbons and rings can be made using this technique. We also report on progress towards high mobility graphene monolayers on silicon carbide for device applications

    Record Maximum Oscillation Frequency in C-face Epitaxial Graphene Transistors

    Full text link
    The maximum oscillation frequency (fmax) quantifies the practical upper bound for useful circuit operation. We report here an fmax of 70 GHz in transistors using epitaxial graphene grown on the C-face of SiC. This is a significant improvement over Si-face epitaxial graphene used in the prior high frequency transistor studies, exemplifying the superior electronics potential of C-face epitaxial graphene. Careful transistor design using a high {\kappa} dielectric T-gate and self-aligned contacts, further contributed to the record-breaking fmax

    Development and validation of a multivariable model for prediction of malignant transformation and recurrence of oral epithelial dysplasia

    Get PDF
    Background: Oral epithelial dysplasia (OED) is the precursor to oral squamous cell carcinoma which is amongst the top ten cancers worldwide. Prognostic significance of conventional histological features in OED is not well established. Many additional histological abnormalities are seen in OED, but are insufficiently investigated, and have not been correlated to clinical outcomes. Methods: A digital quantitative analysis of epithelial cellularity, nuclear geometry, cytoplasm staining intensity and epithelial architecture/thickness is conducted on 75 OED whole-slide images (252 regions of interest) with feature-specific comparisons between grades and against non-dysplastic/control cases. Multivariable models were developed to evaluate prediction of OED recurrence and malignant transformation. The best performing models were externally validated on unseen cases pooled from four different centres (n = 121), of which 32% progressed to cancer, with an average transformation time of 45 months. Results: Grade-based differences were seen for cytoplasmic eosin, nuclear eccentricity, and circularity in basal epithelial cells of OED (p &lt; 0.05). Nucleus circularity was associated with OED recurrence (p = 0.018) and epithelial perimeter associated with malignant transformation (p = 0.03). The developed model demonstrated superior predictive potential for malignant transformation (AUROC 0.77) and OED recurrence (AUROC 0.74) as compared with conventional WHO grading (AUROC 0.68 and 0.71, respectively). External validation supported the prognostic strength of this model. Conclusions: This study supports a novel prognostic model which outperforms existing grading systems. Further studies are warranted to evaluate its significance for OED prognostication.</p

    Differences in physical activity domains, guideline adherence, and weight history between metabolically healthy and metabolically abnormal obese adults: a cross-sectional study

    Get PDF
    BACKGROUND: Despite the accepted health consequences of obesity, emerging research suggests that a significant segment of adults with obesity are metabolically healthy (MHO). To date, MHO individuals have been shown to have higher levels of physical activity (PA), but little is known about the importance of PA domains or the influence of weight history compared to their metabolically abnormal (MAO) counterpart. OBJECTIVE: To evaluate the relationship between PA domains, PA guideline adherence, and weight history on MHO. METHODS: Pooled cycles of the National Health and Nutritional Examination Survey (NHANES) 1999–2006 (≥20 y; BMI ≥ 30 kg/m(2); N = 2,753) and harmonized criteria for metabolic syndrome (MetS) were used. Participants were categorized as “inactive” (no reported PA), “somewhat active” (>0 to < 500 metabolic equivalent (MET) min/week), and “active” (PA guideline adherence, ≥ 500 MET min/week) according to each domain of PA (total, recreational, transportation and household). Logistic and multinomial regressions were modelled for MHO and analyses were adjusted for age, sex, education, ethnicity, income, smoking and alcohol intake. RESULTS: Compared to MAO, MHO participants were younger, had lower BMI, and were more likely to be classified as active according to their total and recreational PA level. Based on total PA levels, individuals who were active had a 70 % greater likelihood of having the MHO phenotype (OR = 1.70, 95 % CI: 1.19–2.43); however, once stratified by age (20–44 y; 45–59 y; and; ≥60 y), the association remained significant only amongst those aged 45–59 y. Although moderate and vigorous PA were inconsistently related to MHO following adjustment for covariates, losing ≥30 kg in the last 10 y and not gaining ≥10 kg since age 25 y were significant predictors of MHO phenotype for all PA domains, even if adherence to the PA guidelines were not met. CONCLUSION: Although PA is associated with MHO, the beneficial effects of PA may be moderated by longer-term changes in weight. Longitudinal analysis of physical activity and weight change trajectories are necessary to isolate the contribution of duration of obesity, PA behaviours, and longer-term outcomes amongst MHO individuals

    Breast cancer biomarkers predict weight loss after gastric bypass surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity has long been associated with postmenopausal breast cancer risk and more recently with premenopausal breast cancer risk. We previously observed that nipple aspirate fluid (n) levels of prostate specific antigen (PSA) were associated with obesity. Serum (s) levels of adiponectin are lower in women with higher body mass index (BMI) and with breast cancer. We conducted a prospective study of obese women who underwent gastric bypass surgery to determine: 1) change in n- and s-adiponectin and nPSA after surgery and 2) if biomarker change is related to change in BMI. Samples (30-s, 28-n) and BMI were obtained from women 0, 3, 6 and 12 months after surgery.</p> <p>Findings</p> <p>There was a significant increase after surgery in pre- but not postmenopausal women at all time points in s-adiponectin and at 3 and 6 months in n-adiponectin. Low n-PSA and high s-adiponectin values were highly correlated with decrease in BMI from baseline.</p> <p>Conclusions</p> <p>Adiponectin increases locally in the breast and systemically in premenopausal women after gastric bypass. s-adiponectin in pre- and nPSA in postmenopausal women correlated with greater weight loss. This study provides preliminary evidence for biologic markers to predict weight loss after gastric bypass surgery.</p
    corecore