15 research outputs found

    Quantification of fractional flow reserve based on angiographic image data

    Get PDF
    Coronary angiography provides excellent visualization of coronary arteries, but has limitations in assessing the clinical significance of a coronary stenosis. Fractional flow reserve (FFR) has been shown to be reliable in discerning stenoses responsible for inducible ischemia. The purpose of this study is to validate a technique for FFR quantification using angiographic image data. The study was carried out on 10 anesthetized, closed-chest swine using angioplasty balloon catheters to produce partial occlusion. Angiography based FFR was calculated from an angiographically measured ratio of coronary blood flow to arterial lumen volume. Pressure-based FFR was measured from a ratio of distal coronary pressure to aortic pressure. Pressure-wire measurements of FFR (FFRP) correlated linearly with angiographic volume-derived measurements of FFR (FFRV) according to the equation: FFRP = 0.41 FFRV + 0.52 (P-value < 0.001). The correlation coefficient and standard error of estimate were 0.85 and 0.07, respectively. This is the first study to provide an angiographic method to quantify FFR in swine. Angiographic FFR can potentially provide an assessment of the physiological severity of a coronary stenosis during routine diagnostic cardiac catheterization without a need to cross a stenosis with a pressure-wire

    Estimation of coronary artery hyperemic blood flow based on arterial lumen volume using angiographic images

    Get PDF
    The purpose of this study is to develop a method to estimate the hyperemic blood flow in a coronary artery using the sum of the distal lumen volumes in a swine animal model. The limitations of visually assessing coronary artery disease are well known. These limitations are particularly important in intermediate coronary lesions where it is difficult to determine whether a particular lesion is the cause of ischemia. Therefore, a functional measure of stenosis severity is needed using angiographic image data. Coronary arteriography was performed in 10 swine (Yorkshire, 25–35 kg) after power injection of contrast material into the left main coronary artery. A densitometry technique was used to quantify regional flow and lumen volume in vivo after inducing hyperemia. Additionally, 3 swine hearts were casted and imaged post-mortem using cone-beam CT to obtain the lumen volume and the arterial length of corresponding coronary arteries. Using densitometry, the results showed that the stem hyperemic flow (Q) and the associated crown lumen volume (V) were related by Q = 159.08 V3/4 (r = 0.98, SEE = 10.59 ml/min). The stem hyperemic flow and the associated crown length (L) using cone-beam CT were related by Q = 2.89 L (r = 0.99, SEE = 8.72 ml/min). These results indicate that measured arterial branch lengths or lumen volumes can potentially be used to predict the expected hyperemic flow in an arterial tree. This, in conjunction with measured hyperemic flow in the presence of a stenosis, could be used to predict fractional flow reserve based entirely on angiographic data
    corecore