108 research outputs found

    Projected loss of soil organic carbon in temperate agricultural soils in the 21<sup>st</sup>century: effects of climate change and carbon input trends

    Get PDF
    Climate change and stagnating crop yields may cause a decline of SOC stocks in agricultural soils leading to considerable CO2 emissions and reduced agricultural productivity. Regional model-based SOC projections are needed to evaluate these potential risks. In this study, we simulated the future SOC development in cropland and grassland soils of Bavaria in the 21st century. Soils from 51 study sites representing the most important soil classes of Central Europe were fractionated and derived SOC pools were used to initialize the RothC soil carbon model. For each site, long-term C inputs were determined using the C allocation method. Model runs were performed for three different C input scenarios as a realistic range of projected yield development. Our modelling approach revealed substantial SOC decreases of 11–16% under an expected mean temperature increase of 3.3 °C assuming unchanged C inputs. For the scenario of 20% reduced C inputs, agricultural SOC stocks are projected to decline by 19–24%. Remarkably, even the optimistic scenario of 20% increased C inputs led to SOC decreases of 3–8%. Projected SOC changes largely differed among investigated soil classes. Our results indicated that C inputs have to increase by 29% to maintain present SOC stocks in agricultural soils

    Protective effects of antiâ C5a peptide antibodies in experimental sepsis

    Full text link
    We evaluated antibodies to different peptide regions of rat C5a in the sepsis model of cecal ligation and puncture (CLP) for their protective effects in rats. Rabbit polyclonal antibodies were developed to the following peptide regions of rat C5a: aminoâ terminal region (A), residues 1â 16; middle region (M), residues 17â 36; and the carboxylâ terminal region (C), residues 58â 77. With rat neutrophils, the chemotactic activity of rat C5a was significantly inhibited by antibodies with the following rank order: antiâ C > antiâ M â « antiâ A. In vivo, antibodies to the M and C (but not A) regions of C5a were protective in experimental sepsis, as determined by survival over a 10â day period, in a doseâ dependent manner. The relative protective efficacies of antiâ C5a preparations (in descending order of efficacy) were antiâ C â ¥ antiâ M â « antiâ A. In CLP rats, a delay in infusion of antibodies, which were injected at 6 or 12 h after CLP, still resulted in significant improvement in survival rates. These in vivo and in vitro data suggest that there are optimal targets on C5a for blockade during sepsis and that delayed infusion of antiâ C5a antibody until after onset of clinical evidence of sepsis still provides protective effects.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154417/1/fsb2fj000653fje-sup-0001.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154417/2/fsb2fj000653fje.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154417/3/fsb2fj000653fje-sup-0002.pd

    Characterization of Apoptosis-Related Oxidoreductases from Neurospora crassa

    Get PDF
    The genome from Neurospora crassa presented three open reading frames homologous to the genes coding for human AIF and AMID proteins, which are flavoproteins with oxidoreductase activities implicated in caspase-independent apoptosis. To investigate the role of these proteins, namely within the mitochondrial respiratory chain, we studied their cellular localization and characterized the respective null mutant strains. Efficiency of the respiratory chain was analyzed by oxygen consumption studies and supramolecular organization of the OXPHOS system was assessed through BN-PAGE analysis in the respective null mutant strains. The results demonstrate that, unlike in mammalian systems, disruption of AIF in Neurospora does not affect either complex I assembly or function. Furthermore, the mitochondrial respiratory chain complexes of the mutant strains display a similar supramolecular organization to that observed in the wild type strain. Further characterization revealed that N. crassa AIF appears localized to both the mitochondria and the cytoplasm, whereas AMID was found exclusively in the cytoplasm. AMID2 was detected in both mitochondria and cytoplasm of the amid mutant strain, but was barely discernible in wild type extracts, suggesting overlapping functions for the two proteins

    Nanoindentation for reliability assessment of ULK films and interconnects structures

    Full text link
    © 2012 Elsevier B.V. All rights reserved. The structural integrity of interconnect structures containing ultra-low-k (ULK) dielectrics is highly dependent on the mechanical properties of the porous dielectrics, e.g. fracture toughness elastic modulus and adhesion as well. Four-point-bending (FPB) and double-cantilever-beam (DCB) methods for the evaluation of fracture properties require out-of-fab sample preparation and testing. The reliable characterization of interfacial adhesion is important for in-line/at-line process development and control in microelectronics manufacturing. The ability to detect an out-of-spec or defective ULK film at an early process step could potentially save processing and materials cost. Therefore, the development of quick turnaround experimental methodologies for monitoring in-line/at-line mechanical stability of ULK films and ULK-containing interconnects is of great interest for semiconductor industry. This study presents two novel experimental approaches for the evaluation of interface adhesion and mechanical robustness of on-chip interconnects structures based on nanoindentation and nanoscratch, (a) wedge indentation and (b) bump assisted BEOL stability indentation (BABSI) tests, respectively. Wedge indentation tests on ULK films with increasing porosity show a decrease of adhesion values. Correspondingly, BABSI tests show increasing failure rates for Cu/ULK interconnect structures containing mechanically weaker dielectrics
    • …
    corecore