12,898 research outputs found
Errors in hybrid computers
Method is described for reduction of error components in numerical integration, sampling with zero hold order, and execution time delay
An analysis of satellite state vector observability using SST tracking data
Observability of satellite state vectors, using only SST tracking data was investigated by covariance analysis under a variety of satellite and station configurations. These results indicate very precarious observability in most short arc cases. The consequences of this are large variances on many state components, such as the downrange component of the relay satellite position. To illustrate the impact of observability problems, an example is given of two distinct satellite orbit pairs generating essentially the same data arc. The physical bases for unobservability are outlined and related to proposed TDRSS configurations. Results are relevant to any mission depending upon TDRSS to determine satellite state. The required mathematical analysis and the software used is described
The maximum density droplet to lower density droplet transition in quantum dots
We show that, Landau level mixing in two-dimensional quantum dot wave
functions can be taken into account very effectively by multiplying the exact
lowest Landau level wave functions by a Jastrow factor which is optimized by
variance minimization. The comparison between exact diagonalization and fixed
phase diffusion Monte Carlo results suggests that the phase of the many-body
wave functions are not affected much by Landau level mixing. We apply these
wave functions to study the transition from the maximum density droplet state
(incipient integer quantum Hall state with angular momentum L=N(N-1)/2) to
lower density droplet states (L>N(N-1)/2).Comment: 8 pages, 5 figures, accepted for publication in Phys. Rev.
The Trapped Polarized Fermi Gas at Unitarity
We consider population-imbalanced two-component Fermi gases under external
harmonic confinement interacting through short-range two-body potentials with
diverging s-wave scattering length. Using the fixed-node diffusion Monte Carlo
method, the energies of the "normal state" are determined as functions of the
population-imbalance and the number of particles. The energies of the trapped
system follow, to a good approximation, a universal curve even for fairly small
systems. A simple parameterization of the universal curve is presented and
related to the equation of state of the bulk system.Comment: 4 pages, 2 tables, 2 figure
Dipolar Bose gases: Many-body versus mean-field description
We characterize zero-temperature dipolar Bose gases under external spherical
confinement as a function of the dipole strength using the essentially exact
many-body diffusion Monte Carlo (DMC) technique. We show that the DMC energies
are reproduced accurately within a mean-field framework if the variation of the
s-wave scattering length with the dipole strength is accounted for properly.
Our calculations suggest stability diagrams and collapse mechanisms of dipolar
Bose gases that differ significantly from those previously proposed in the
literature
Moessbauer spectroscopy and scanning electron microscopy of the Murchison meteorite
Meteorites provide a wealth of information about the solar system's formation, since they have similar building blocks as the Earth's crust but have been virtually unaltered since their formation. Some stony meteorites contain minerals and silicate inclusions, called chondrules, in the matrix. Utilizing Moessbauer spectroscopy, we identified minerals in the Murchison meteorite, a carbonaceous chondritic meteorite, by the gamma ray resonance lines observed. Absorption patterns of the spectra were found due to the minerals olivine and phyllosilicate. We used a scanning electron microscope to describe the structure of the chondrules in the Murchison meteorite. The chondrules were found to be deformed due to weathering of the meteorite. Diameters varied in size from 0.2 to 0.5 mm. Further enhancement of the microscopic imagery using a digital image processor was used to describe the physical characteristics of the inclusions
Covariance analysis of the airborne laser ranging system
The requirements and limitations of employing an airborne laser ranging system for detecting crustal shifts of the Earth within centimeters over a region of approximately 200 by 400 km are presented. The system consists of an aircraft which flies over a grid of ground deployed retroreflectors, making six passes over the grid at two different altitudes. The retroreflector baseline errors are assumed to result from measurement noise, a priori errors on the aircraft and retroreflector positions, tropospheric refraction, and sensor biases
Two-dimensional molecular para-hydrogen and ortho-deuterium at zero temperature
We study molecular para-hydrogen (p-) and ortho-deuterium
(o-) in two dimensions and in the limit of zero temperature by
means of the diffusion Monte Carlo method. We report energetic and structural
properties of both systems like the total and kinetic energy per particle,
radial pair distribution function, and Lindemann's ratio in the low pressure
regime. By comparing the total energy per particle as a function of the density
in liquid and solid p-, we show that molecular para-hydrogen, and
also ortho-deuterium, remain solid at zero temperature. Interestingly, we
assess the quality of three different symmetrized trial wave functions, based
on the Nosanow-Jastrow model, in the p- solid film at the
variational level. In particular, we analyze a new type of symmetrized trial
wave function which has been used very recently to describe solid He and
found that also characterizes hydrogen satisfactorily. With this wave function,
we show that the one-body density matrix of solid p- possesses off-diagonal long range order, with a condensate fraction
that increases sizably in the negative pressure regime.Comment: 11 pages, 9 figure
Dipolar Bose-Einstein condensates with dipole-dependent scattering length
We consider a Bose-Einstein condensate of polar molecules in a harmonic trap,
where the effective dipole may be tuned by an external field. We demonstrate
that taking into account the dependence of the scattering length on the dipole
moment is essential to reproducing the correct energies and for predicting the
stability of the condensate. We do this by comparing Gross-Pitaevskii
calculations with diffusion Monte Carlo calculations. We find very good
agreement between the results obtained by these two approaches once the dipole
dependence of the scattering length is taken into account. We also examine the
behavior of the condensate in non-isotropic traps
The antibody loci of the domestic goat (Capra hircus)
The domestic goat (Capra hircus) is an important ruminant species both as a source of antibody-based reagents for research and biomedical applications and as an economically important animal for agriculture, particularly for developing nations that maintain most of the global goat population. Characterization of the loci encoding the goat immune repertoire would be highly beneficial for both vaccine and immune reagent development. However, in goat and other species whose reference genomes were generated using short-read sequencing technologies, the immune loci are poorly assembled as a result of their repetitive nature. Our recent construction of a long-read goat genome assembly (ARS1) has facilitated characterization of all three antibody loci with high confidence and comparative analysis to cattle. We observed broad similarity of goat and cattle antibody-encoding loci but with notable differences that likely influence formation of the functional antibody repertoire. The goat heavy-chain locus is restricted to only four functional and nearly identical IGHV genes, in contrast to the ten observed in cattle. Repertoire analysis indicates that light-chain usage is more balanced in goats, with greater representation of kappa light chains (~Â 20-30%) compared to that in cattle (~Â 5%). The present study represents the first characterization of the goat antibody loci and will help inform future investigations of their antibody responses to disease and vaccination
- …