133 research outputs found

    Arthropathies Associated with Basic Calcium Phosphate Crystals

    Get PDF
    Basic calcium phosphate (BCP) crystals refer to a family of crystals including partially carbonate substituted hydroxyapatite, octacalcium phosphate, and tricalcium phosphate. These crystals have been found in and around joints and have been associated with several forms of arthritis and periarthritis. Identification of BCP crystals remains problematic because of the lack of a simple, reliable analytic procedure. Methods currently in use include alizarin red S staining, labelled diphosphonate binding, scanning and transmission electron microscopy with energy dispersive X-ray microanalysis, X-ray diffraction, and atomic force microscopy. Periarthropathies associated with BCP crystals include calcific tendinitis and bursitis. Intra-articular BCP crystal deposition is common in osteoarthritis, often found together with calcium pyrophosphate dihydrate crystals. Uncommon conditions in which BCP crystals are found include destructive shoulder arthropathies, acute inflammatory attacks of arthritis, and erosive arthritis. Secondary deposition of BCP crystals has been observed in chronic renal failure, in patients with collagen vascular diseases, following neurologic injury and after local corticosteroid injection

    Calcium Pyrophosphate Crystal Deposition: The Effect of Monosodium Urate and Apatite Crystals in a Kinetic Study Using a Gelatin Matrix Model

    Get PDF
    The kinetics of calcium pyrophosphate dihydrate (CPPD) crystal growth was studied by allowing calcium and pyrophosphate (PPi-4) ions to diffuse through a denatured collagen matrix (biological grade gelatin) in the presence of either monosodium urate monohydrate (MSU) or hydroxyapatite (HA) crystals. In this in vitro model system, MSU crystals significantly altered the kinetics of PPi-4 ionic diffusion through the gelatin matrix by allowing the [PPi-4] gradient to fall off much more rapidly, suggesting an increased level of scavenging of PPi-4 ions into crystalline materials. Even more significantly, the presence of MSU crystals markedly influenced the crystal growth morphology of triclinic CPPD, producing that observed in vivo. A large number of epitaxially dimensional matches between MSU and triclinic (t) and monoclinic (m) CPPD were identified, suggesting that MSU crystals can epitaxially induce CPPD crystal growth. This finding supports the hypothesis that the association of urate gout and CPPD crystal deposition disease is based on the nucleating potential of MSU crystals for CPPD crystal growth. In contrast, the HA crystal structure did not appear to serve as a nucleating agent for CPPD crystals. However, HA crystals did serve as effective traps for PPi-4 ions and their presence led to more stable CPPD crystal growth

    Calcium Pyrophosphate Crystal Deposition: The Effect of Soluble Iron in a Kinetic Study Using a Gelatin Matrix Model

    Get PDF
    The kinetics of calcium pyrophosphate dihydrate (CPPD) crystal growth was studied by allowing calcium and pyrophosphate (PPi-4) ions to diffuse through a denatured collagen matrix (biological grade gelatin) in the presence of either ferric or ferrous ions. Ferric and, to some extent, ferrous ions blocked the migration of the PPi-4 diffusion gradient. This retardation in the [PPi-4] gradient led to numerous changes in the patterns of CPPD crystal formation. At the initial stages of crystal growth, the iron ions induced more crystal growth compared to control. At later incubation times, ferrous and ferric ions enhanced crystal growth at the expense of crystal nucleation. The presence of both ferrous and ferric ions resulted in the more rapid formation of the two crystals observed in vivo, triclinic CPPD and monoclinic CPPD. Further, both ferrous and ferric ions also reduced the solubility of the crystalline material in the broad diffuse band which formed when the Ca+2 and PPi-4 gradients first met. In this system, the presence of either ferrous or ferric ions increased the amount of hydroxyproline included in the crystalline precipitates. Iron was also incorporated into the crystals, particularly into the triclinic CPPD and monoclinic CPPD crystals

    Calcium Pyrophosphate Crystal Deposition: A Kinetic Study Using a Type I Collagen Gel Model

    Get PDF
    Calcium pyrophosphate dihydrate (CPPD) crystal deposition disease is characterized by deposits of triclinic (t) and monoclinic (m) CPPD crystals in articular and fibrocartilage. Many investigators have attempted to model CPPD crystal growth using both solution and a variety of gel systems. We have investigated the effect of type I collagen fibrils on CPPD crystal nucleation and growth using an ionic diffusion model. Collagen was isolated from porcine menisci using a pepsin solubilization procedure and gelled in three layers, with one containing 10 mM pyrophosphate (PPi) plus physiologic ions, the middle containing only the ions, while the third contained 25 mM Ca plus physiologic ions. Initially, amorphorous calcium pyrophosphate formed at the Ca-PPi interface. Monoclinic CPPD crystallized in 6 weeks when the [Ca] was between 2 and 3 mM and the [PPi] was between 50 and 75 μM. At 13 weeks, t-CPPD formed when the [Ca] was also between 2 and 3 mM, but the PPi was less than 25 μM. One of the most striking differences between this system and all previous solution and gel model systems is the total absence of orthorhombic calcium pyrophosphate tetrahydrate (o-CPPT) from the gels made of collagen fibrils in near native conformation. Further, crystals of t-CPPD appear as large single crystals with the classic prismatic growth habit observed in vivo, and crystals of m-CPPD also evidence the in vivo rod habit. In contrast, the crystal growth habits of t-CPPD, m-CPPD, and o-CPPT grown in all of the other model systems never matched that observed in vivo. When compared to the previous studies, these results, particularly the crystal growth habit data, suggest that the native collagen fibrils themselves can nucleate CPPD crystal formation

    Modified Chaplygin Gas and Constraints on its B parameter from CDM and UDME Cosmological models

    Full text link
    We study Modified Chaplygin Gas (MCG) as a candidate for dark energy and predict the values of parameters of the gas for a physically viable cosmological model. The equation of state of MCG (p=BρAραp=B \rho - \frac {A}{\rho^\alpha} ) involves three parameters: BB, AA and α\alpha. The permitted values of these parameters are determined with the help of dimensionless age parameter (HotoH_{o}t_{o}) and H(z)zH(z)-z Data. Specifically we study the allowed ranges of values of B parameter in terms of α\alpha and AsA_{s} (AsA_{s} is defined in terms of the constants in the theory). We explore the constraints of the parameters in Cold Dark Matter(CDM) model and UDME(Unified Dark Matter Energy) model respectively.Comment: 5 pages, 10 fig

    Evidence for He I 10830 \AA~ absorption during the transit of a warm Neptune around the M-dwarf GJ 3470 with the Habitable-zone Planet Finder

    Full text link
    Understanding the dynamics and kinematics of out-flowing atmospheres of hot and warm exoplanets is crucial to understanding the origins and evolutionary history of the exoplanets near the evaporation desert. Recently, ground based measurements of the meta-stable Helium atom's resonant absorption at 10830 \AA~has become a powerful probe of the base environment which is driving the outflow of exoplanet atmospheres. We report evidence for the He I 10830 \AA~in absorption (equivalent width \sim 0.012±0.0020.012 \pm 0.002 \AA) in the exosphere of a warm Neptune orbiting the M-dwarf GJ 3470, during three transits using the Habitable Zone Planet Finder (HPF) near infrared spectrograph. This marks the first reported evidence for He I 10830 \AA\, atmospheric absorption for a planet orbiting an M-dwarf. Our detected absorption is broad and its blueshifted wing extends to -36 km/sec, the largest reported in the literature to date. We modelled the state of Helium atoms in the exosphere of GJ3470b based on assumptions on the UV and X-ray flux of GJ 3470, and found our measurement of flux-weighted column density of meta-stable state Helium (NHe32S=2.4×1010cm2)(N_{He^2_3S} = 2.4 \times 10^{10} \mathrm{cm^{-2}}), derived from our transit observations, to be consistent with model, within its uncertainties. The methodology developed here will be useful to study and constrain the atmospheric outflow models of other exoplanets like GJ 3470b which are near the edge of the evaporation desert.Comment: Accepted in Ap

    Persistent starspot signals on M dwarfs: multi-wavelength Doppler observations with the Habitable-zone Planet Finder and Keck/HIRES

    Get PDF
    Young, rapidly-rotating M dwarfs exhibit prominent starspots, which create quasiperiodic signals in their photometric and Doppler spectroscopic measurements. The periodic Doppler signals can mimic radial velocity (RV) changes expected from orbiting exoplanets. Exoplanets can be distinguished from activity-induced false positives by the chromaticity and long-term incoherence of starspot signals, but these qualities are poorly constrained for fully-convective M stars. Coherent photometric starspot signals on M dwarfs may persist for hundreds of rotations, and the wavelength dependence of starspot RV signals may not be consistent between stars due to differences in their magnetic fields and active regions. We obtained precise multi-wavelength RVs of four rapidly-rotating M dwarfs (AD Leo, G 227-22, GJ 1245B, GJ 3959) using the near-infrared (NIR) Habitable-zone Planet Finder, and the optical Keck/HIRES spectrometer. Our RVs are complemented by photometry from Kepler, TESS, and the Las Cumbres Observatory (LCO) network of telescopes. We found that all four stars exhibit large spot-induced Doppler signals at their rotation periods, and investigated the longevity and optical-to-NIR chromaticity for these signals. The phase curves remain coherent much longer than is typical for Sunlike stars. Their chromaticity varies, and one star (GJ 3959) exhibits optical and NIR RV modulation consistent in both phase and amplitude. In general, though, we find that the NIR amplitudes are lower than their optical counterparts. We conclude that starspot modulation for rapidly-rotating M stars frequently remains coherent for hundreds of stellar rotations, and gives rise to Doppler signals that, due to this coherence, may be mistaken for exoplanets.Comment: Accepted for publication in the Astrophysical Journa

    Detection of p-mode Oscillations in HD 35833 with NEID and TESS

    Full text link
    We report the results of observations of p-mode oscillations in the G0 subgiant star HD 35833 in both radial velocities and photometry with NEID and TESS, respectively. We achieve separate, robust detections of the oscillation signal with both instruments (radial velocity amplitude ARV=1.11±0.09A_{\rm RV}=1.11\pm0.09 m s1^{-1}, photometric amplitude Aphot=6.42±0.60A_{\rm phot}=6.42\pm0.60 ppm, frequency of maximum power νmax=595.71±17.28\nu_{\rm max} = 595.71\pm17.28 μ\muHz, and mode spacing Δν=36.65±0.96\Delta \nu = 36.65\pm0.96 μ\muHz) as well as a non-detection in a TESS sector concurrent with the NEID observations. These data shed light on our ability to mitigate the correlated noise impact of oscillations with radial velocities alone, and on the robustness of commonly used asteroseismic scaling relations. The NEID data are used to validate models for the attenuation of oscillation signals for exposure times t<νmax1t<\nu_{\rm max}^{-1}, and we compare our results to predictions from theoretical scaling relations and find that the observed amplitudes are weaker than expected by >4σ>4\sigma, hinting at gaps in the underlying physical models.Comment: 19 Pages, 14 Figures, Appendi
    corecore