5 research outputs found

    The low frequency receivers for SKA 1-low: Design and verification

    Get PDF
    The initial phase of the Square Kilometre Array (SKA) [1] is represented by a ~10% instrument and construction should start in 2018. SKA 1-Low, a sparse Aperture Array (AA) covering the frequency range 50 to 350 MHz, will be part of this. This instrument will consist of 512 stations, each hosting 256 antennas creating a total of 131,072 antennas. A first verification system towards SKA 1-Low, Aperture Array Verification System 1 (AAVSl), is being deployed and validated in 2017

    Growth and spectroscopic studies of CdS/CdSe single layers and superlattice structures

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:DX171780 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Research Roadmap for Intelligent and Responsive Buildings

    No full text
    Intelligence has three parts cognitive, emotional and practical. A building needs to reflect this. Soan intelligent building will responsive to people in terms of not only being functional but to thehuman senses besides serving a community in the location. It will be resource effective in terms ofenergy , water and waste with low pollution. It will be smart in terms of technology selected toenable the systems to respond effectively but also make them easier for people to use. Today thereis a focus on health and wellbeing and so intelligent buildings must produce a healing environment.Buildings need to be functional and practical but also expressive. Equally important is theinfrastructure that services buildings and the people moving between them

    100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care - Preliminary Report.

    No full text
    BACKGROUND: The U.K. 100,000 Genomes Project is in the process of investigating the role of genome sequencing in patients with undiagnosed rare diseases after usual care and the alignment of this research with health care implementation in the U.K. National Health Service. Other parts of this project focus on patients with cancer and infection. METHODS: We conducted a pilot study involving 4660 participants from 2183 families, among whom 161 disorders covering a broad spectrum of rare diseases were present. We collected data on clinical features with the use of Human Phenotype Ontology terms, undertook genome sequencing, applied automated variant prioritization on the basis of applied virtual gene panels and phenotypes, and identified novel pathogenic variants through research analysis. RESULTS: Diagnostic yields varied among family structures and were highest in family trios (both parents and a proband) and families with larger pedigrees. Diagnostic yields were much higher for disorders likely to have a monogenic cause (35%) than for disorders likely to have a complex cause (11%). Diagnostic yields for intellectual disability, hearing disorders, and vision disorders ranged from 40 to 55%. We made genetic diagnoses in 25% of the probands. A total of 14% of the diagnoses were made by means of the combination of research and automated approaches, which was critical for cases in which we found etiologic noncoding, structural, and mitochondrial genome variants and coding variants poorly covered by exome sequencing. Cohortwide burden testing across 57,000 genomes enabled the discovery of three new disease genes and 19 new associations. Of the genetic diagnoses that we made, 25% had immediate ramifications for clinical decision making for the patients or their relatives. CONCLUSIONS: Our pilot study of genome sequencing in a national health care system showed an increase in diagnostic yield across a range of rare diseases. (Funded by the National Institute for Health Research and others.)
    corecore