2,140 research outputs found

    A criterion for when an emulsion drop undergoing turbulent deformation has reached a critically deformed state

    Get PDF
    Turbulent breakup in emulsification devices is a dynamic process. Small viscous drops undergo a sequence of oscillations before entering the monotonic deformation phase leading to breakup. The turbulence-interface interactions prior to reaching critical deformation are therefore essential for understanding and modeling breakup. This contribution uses numerical experiments to characterize the critically deformed state (defined as a state from which breakup will follow deterministically, even if no further external stresses would act on the drop). Critical deformation does not coincide with a threshold maximum surface area, as previously suggested. A drop is critically deformed when a neck has formed locally with a curvature such that the Laplace pressure exceeds that of the smallest of the bulbs connected by the neck. This corresponds to a destabilizing internal flow, further thinning the neck. Assuming that the deformation leads to two spherical bulbs linked by a cylindrical neck, the critical deformation is achieved when the neck diameter becomes smaller than the radius of the smallest bulb. The role of emulsifiers is also discussed

    High-intensity interval training for reducing blood pressure: a randomized trial vs. moderate-intensity continuous training in males with overweight or obesity

    Full text link
    The optimal exercise-training characteristics for reducing blood pressure (BP) are unclear. We investigated the effects of 6-weeks of high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT) on BP and aortic stiffness in males with overweight or obesity. Twenty-eight participants (18–45 years; BMI: 25–35 kg/m2) performed stationary cycling three times per week for 6 weeks. Participants were randomly allocated (unblinded) to work-matched HIIT (N = 16; 10 × 1-min intervals at 90–100% peak workload) or MICT (N = 12; 30 min at 65–75% peak heart rate). Central (aortic) and peripheral (brachial) BP and aortic stiffness was assessed before and after training. There were no significant group × time interactions for any BP measure (all p > 0.21). HIIT induced moderate reductions in central (systolic/diastolic ∆: −4.6/−3.5 mmHg, effect size d = −0.51/−0.40) and peripheral BP (−5.2/−4 mmHg, d = −0.45/−0.47). MICT induced moderate reductions in diastolic BP only (peripheral: −3.4 mmHg, d = −0.57; central: −3 mmHg, d = −0.50). The magnitude of improvement in BP was strongly negatively correlated with baseline BP (r = −0.66 to −0.78), with stronger correlations observed for HIIT (r = −0.73 to −0.88) compared with MICT (r = −0.43 to −0.61). HIIT was effective for reducing BP (~3–5 mmHg) in the overweight to obese cohort. Exercise training induced positive changes in central (aortic) BP. The BP-lowering effects of exercise training are more prominent in those with higher baseline BP, with stronger correlation in HIIT than MICT

    The effect of high-intensity interval training and moderate-intensity continuous training on aerobic fitness and body composition in males with overweight or obesity: A randomized trial

    Full text link
    The optimal exercise training characteristics for improving body composition in individuals with obesity are not clear. This study assessed the effects of 6-weeks of high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT) on aerobic fitness and body composition in males with overweight or obesity. Twenty-eight participants (18–45 years; BMI: 25–35 kg/m2) performed stationary cycling 3 times per week for 6 weeks. Participants were randomly allocated to work-matched HIIT (N = 16) (10 × 1-min intervals at ~90% peak heart rate) or MICT (N = 12) (30 min at 65–75% peak heart rate). Maximal aerobic capacity (VO2peak) and body composition were assessed before and after 6-week training. Both HIIT and MICT induced moderate increases in aerobic fitness (Δ% VO2peak: HIIT 9 ± 8%, ES = 0.42; MICT: 7 ± 13%, ES = 0.32) and work capacity (Δ% peak workload: HIIT 13 ± 10%, ES = 0.69: MICT 17 ± 15%, ES = 0.76), but these changes did not differ significantly between the groups (all p > 0.16). The effects of HIIT or MICT on body composition outcomes were negligible to small across whole-body and all regional-specific sites (all effect sizes ES = −0.19 to 0.38) and did not differ significantly between the groups (all p > 0.21). Short-term (6-weeks) cycling training did not improve body composition in males with overweight or obesity. Improvements in aerobic fitness were comparable between work-matched HIIT and MICT

    How Changing the Inversion/ Eversion Foot Angle Affects the Nondriving Intersegmental Knee Moments and the Relative Activation of the Vastii Muscles in Cycling

    Get PDF
    Nondriving intersegmental knee moment components (i.e., varus/valgus and internal/ external axial moments) neutral). A previously described mathematical model was used to compute the nondriving intersegmental knee moments throughout the crank cycle. The excitations of the VMO, VL, and TFL muscles were measured with surface electromyography and the muscle activations were computed. On average, the 10-deg everted position decreased the peak varus moment by 55% and decreased the peak internal axial moment by 53% during the power stroke (crank cycle region where the knee moment is extensor). A correlation analysis revealed that the VMO/VL activation ratio increase

    Apoptosis-Like Death in Bacteria Induced by HAMLET, a Human Milk Lipid-Protein Complex

    Get PDF
    Background: Apoptosis is the primary means for eliminating unwanted cells in multicellular organisms in order to preserve tissue homeostasis and function. It is characterized by distinct changes in the morphology of the dying cell that are orchestrated by a series of discrete biochemical events. Although there is evidence of primitive forms of programmed cell death also in prokaryotes, no information is available to suggest that prokaryotic death displays mechanistic similarities to the highly regulated programmed death of eukaryotic cells. In this study we compared the characteristics of tumor and bacterial cell death induced by HAMLET, a human milk complex of alpha-lactalbumin and oleic acid. Methodology/Principal Findings: We show that HAMLET-treated bacteria undergo cell death with mechanistic and morphologic similarities to apoptotic death of tumor cells. In Jurkat cells and Streptococcus pneumoniae death was accompanied by apoptosis-like morphology such as cell shrinkage, DNA condensation, and DNA degradation into high molecular weight fragments of similar sizes, detected by field inverse gel electrophoresis. HAMLET was internalized into tumor cells and associated with mitochondria, causing a rapid depolarization of the mitochondrial membrane and bound to and induced depolarization of the pneumococcal membrane with similar kinetic and magnitude as in mitochondria. Membrane depolarization in both systems required calcium transport, and both tumor cells and bacteria were found to require serine protease activity (but not caspase activity) to execute cell death. Conclusions/Significance: Our results suggest that many of the morphological changes and biochemical responses associated with apoptosis are present in prokaryotes. Identifying the mechanisms of bacterial cell death has the potential to reveal novel targets for future antimicrobial therapy and to further our understanding of core activation mechanisms of cell death in eukaryote cells

    Directed vaccination against pneumococcal disease

    Get PDF
    Immunization strategies against commensal bacterial pathogens have long focused on eradicating asymptomatic carriage as well as disease, resulting in changes in the colonizing microflora with unknown future consequences. Additionally, current vaccines are not easily adaptable to sequence diversity and immune evasion. Here, we present a "smart" vaccine that leverages our current understanding of disease transition from bacterial carriage to infection with the pneumococcus serving as a model organism. Using conserved surface proteins highly expressed during virulent transition, the vaccine mounts an immune response specifically against disease-causing bacterial populations without affecting carriage. Aided by a delivery technology capable of multivalent surface display, which can be adapted easily to a changing clinical picture, results include complete protection against the development of pneumonia and sepsis during animal challenge experiments with multiple, highly variable, and clinically relevant pneumococcal isolates. The approach thus offers a unique and dynamic treatment option readily adaptable to other commensal pathogens

    Activated Ion Electron Capture Dissociation (AI ECD) of proteins: synchronization of infrared and electron irradiation with ion magnetron motion.

    Get PDF
    Here, we show that to perform activated ion electron capture dissociation (AI-ECD) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with a CO(2) laser, it is necessary to synchronize both infrared irradiation and electron capture dissociation with ion magnetron motion. This requirement is essential for instruments in which the infrared laser is angled off-axis, such as the Thermo Finnigan LTQ FT. Generally, the electron irradiation time required for proteins is much shorter (ms) than that required for peptides (tens of ms), and the modulation of ECD, AI ECD, and infrared multiphoton dissociation (IRMPD) with ion magnetron motion is more pronounced. We have optimized AI ECD for ubiquitin, cytochrome c, and myoglobin; however the results can be extended to other proteins. We demonstrate that pre-ECD and post-ECD activation are physically different and display different kinetics. We also demonstrate how, by use of appropriate AI ECD time sequences and normalization, the kinetics of protein gas-phase refolding can be deconvoluted from the diffusion of the ion cloud and measured on the time scale longer than the period of ion magnetron motion

    Liquid Chromatography Electron Capture Dissociation Tandem Mass Spectrometry (LC-ECD-MS/MS) versus Liquid Chromatography Collision-induced Dissociation Tandem Mass Spectrometry (LC-CID-MS/MS) for the Identification of Proteins

    Get PDF
    Electron capture dissociation (ECD) offers many advantages over the more traditional fragmentation techniques for the analysis of peptides and proteins, although the question remains: How suitable is ECD for incorporation within proteomic strategies for the identification of proteins? Here, we compare LC-ECD-MS/MS and LC-CID-MS/MS as techniques for the identification of proteins.Experiments were performed on a hybrid linear ion trap–Fourier transform ion cyclotron resonance mass spectrometer. Replicate analyses of a six-protein (bovine serum albumin, apo-transferrin,lysozyme, cytochrome c, alcohol dehydrogenase, and β-galactosidase) tryptic digest were performed and the results analyzed on the basis of overall protein sequence coverage and sequence tag lengths within individual peptides. The results show that although protein coverage was lower for LC-ECDMS/MS than for LC-CID-MS/MS, LC-ECD-MS/MS resulted in longer peptide sequence tags,providing greater confidence in protein assignment

    Electron Capture Dissociation Mass Spectrometry of Tyrosine Nitrated Peptides

    Get PDF
    In vivo protein nitration is associated with many disease conditions that involve oxidative stress and inflammatory response. The modification involves addition of a nitro group at the position ortho to the phenol group of tyrosine to give 3-nitrotyrosine. To understand the mechanisms and consequences of protein nitration, it is necessary to develop methods for identification of nitrotyrosine-containing proteins and localization of the sites of modification.Here, we have investigated the electron capture dissociation (ECD) and collision-induced association (CID) behavior of 3-nitrotyrosine-containing peptides. The presence of nitration did not affect the CID behavior of the peptides. For the doubly-charged peptides, addition of nitration severely inhibited the production of ECD sequence fragments. However, ECD of the triply-charged nitrated peptides resulted in some singly-charged sequence fragments. ECD of the nitrated peptides is characterized by multiple losses of small neutral species including hydroxyl radicals, water and ammonia. The origin of the neutral losses has been investigated by use of activated ion (AI) ECD. Loss of ammonia appears to be the result of non-covalent interactions between the nitro group and protonated lysine side-chains

    Genetic Algorithm in the Optimization of the Acoustic Attenuation System

    Full text link
    [EN] It is well known that Genetic Algorithms (GA) is an optimization method which can be used in problems where the traditional optimization techniques are difficult to be applied. Sonic Crystals (SC) are periodic structures that present ranges of sound frequencies related with the periodicity of the structure, where the sound propagation is forbidden. This means that in the acoustic spectrum there are ranges of frequencies with high acoustic attenuation. This attenuation can be improved producing vacancies in the structure. In this paper we use a parallel implementation of a GA to optimize those structures, by means of the creation of vacancies in a starting SC, in order to obtain the best acoustic attenuation in a predetermined range of frequencies. The cost function used in GA is based on the Multiple Scattering Theory (MST), which is a self consistent method for calculating acoustic pressure in SCs. As a final result we achieve a quasi ordered structures that presents a high acoustic attenuation in a predetermined range of frequencies, independent of the periodicity of the SC.The authors acknowledge financial support provided by the Spanish MEC (Project No. MAT2006-03097) and by the Generalitat Valenciana (Spain) under Grant No. GV/2007/191. This work also has been partially supported by MEC (Spanish government) and FEDER funds: projects DPI2005-07835, DPI2004- 8383-C03-02 and GVA-026.Romero García, V.; Fuster García, E.; Sánchez Pérez, JV.; García Raffi, LM.; Blasco, X.; Herrero Durá, JM.; Sanchís Saez, J. (2007). Genetic Algorithm in the Optimization of the Acoustic Attenuation System. Lecture Notes in Computer Science. 4507:614-621. https://doi.org/10.1007/978-3-540-73007-1_74S6146214507Martínez-Sala, R., Sancho, J., Sánchez Pérez, J.V., Llinares, J., Meseguer, F.: Sound attenuation by sculpture. Nature (London) 387, 241 (1995)Hushwaha, M.S., Halevi, P., Martínez, G., Dobrynski, L., Djafari-Rouhani, B.: Theory of acoustic band structure of periodic elastic composites. Phys. Rev. B 49(4), 2313–2322 (1994)Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Xhan, C.T., Sheng, P.: Locally resonatn sonic materials. Science 289, 1734 (2000)Hu, X., Chan, C.T., Zi, J.: Two dimensional sonic crystals with Helmholtz resonators. Phys. Rev. E 71, 055601 (2005)Umnova, O., Attenborough, K., Linton, C.M.: Effects of porous covering on sound attenuation by poriodi arrays of cylinders. J. Acoust. Soc. Am. 119, 278 (2006)Caballero, D., Sánchez-Dehesa, J., Martínez-Sala, R., Rubio, C., Sánchez Pérez, J.V.S., Sanchis, L., Meseguer, F.: Suzuki phase in two-dimensional sonic crystals. Phys. Rev. B 64, 064303 (2001)Hakansson, A., Sánchez-Dehesa, J., Sanchis, L.: Acoustic lens design by genetic algorithms. Phys. Rev. B 70, 214302 (2004)Romero-García, V., Fuster, E., García-Raffi, L.M., Sánchez-Pérez, E.A., Sopena, M., Llinares, J., Sánchez-Pérez, J.V.: Band gap creation using quasiordered strutures based on sonic crystals. Appl. Phys. Lett. 88, 174104-1 174104-3 (2006)Chen, Y.Y., Ye, Z.: Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays. Phys. Rev. E 64, 036616 (2001)Economou, E.N., Sigalas, M.M.: Classical wave propagation in periodic structures: Cermet versus network topology. Phys. Rev. B 48(18), 13434 (1993)Sigalas, M.M., Economou, E.N., Kafesaki, M.: Spectral gaps for electromagnietic and scalar waves: Possible explanation for certain differences. Phys. Rev. B 50(5), 3393 (1994)Goldberg, D.E.: Genetic Algorithms in search, optimization and machine learning. Addison-Wesley, London (1989)Bäck, T.: Evolutionaty Algorithms in theory and practice. Oxford University Press, New York (1996)Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: Proc. Second International Conference on Genetic Algorithms (1987)Mühlenbein, H., Schlierkamp-Voosen, D.: Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization. Evolutionary Computation 1(1) (1993)Cantú-Paz, E.: A summary of resaearch on parallel genetic algorithms. Technical Report 95007, Illinois Genetic Algorithms Laboratory. IlliGAL (1995
    • …
    corecore