8 research outputs found
Generalized Parity-Time Symmetry Condition for Enhanced Sensor Telemetry
Wireless sensors based on micro-machined tunable resonators are important in
a variety of applications, ranging from medical diagnosis to industrial and
environmental monitoring.The sensitivity of these devices is, however, often
limited by their low quality (Q) factor.Here, we introduce the concept of
isospectral party time reciprocal scaling (PTX) symmetry and show that it can
be used to build a new family of radiofrequency wireless microsensors
exhibiting ultrasensitive responses and ultrahigh resolution, which are well
beyond the limitations of conventional passive sensors. We show theoretically,
and demonstrate experimentally using microelectromechanical based wireless
pressure sensors, that PTXsymmetric electronic systems share the same
eigenfrequencies as their parity time (PT)-symmetric counterparts, but
crucially have different circuit profiles and eigenmodes. This simplifies the
electronic circuit design and enables further enhancements to the extrinsic Q
factor of the sensors
Self-Powered Multi-Function Harmonics-Based Wireless Sensing System Using Graphene Bioelectronics
We introduce a new paradigm of low-noise and low-interface wireless sensing system, which receives a radio signal at the fundamental frequency f0 and retransmits high harmonics (e.g. second harmonic 2f0) with the conversion gain being modulated by the targeted agent. Specifically, the harmonic-transponder sensor (or harmonic sensor) is based on all-graphene radio-frequency (RF) circuits. Thanks to unique properties in graphene field-effect transistors (GFETs), such as the ambipolar carrier transport and the shiftable charge neutral point, the frequency modulation and chemical/molecular sensing functions can be combined into a single RF component (i.e., chemically-sensitive modulator). By transmitting and interrogating RF signals with orthogonal frequencies, the backscattered signal can be free from severe background clutters, jamming, multipath-scattering and background electromagnetic interfaces, regardless of the sensor’s scattering cross-section. Moreover, a GFET-based RF modulator circuit may enable dual/multi-functional sensing by employing the machine learning approach to interpret output harmonics. The proposed graphene-based harmonic sensor may be used to a variety of sensing applications, including, but not limited to, real-time monitoring of chemical and gas exposures, as well as biological agents. Further development of such technique may have an impact on wearable and implantable devices, internet of things (IoTs), industry 4.0, and smart city
Recommended from our members
Giant Photoresponsivity of Midinfrared Hyperbolic Metamaterials in the Photon-Assisted-Tunneling Regime
We explore broadband and omnidirectional midinfrared rectification based on nanopatterned hyperbolic metamaterials, composed of two dissimilar metals separated by an ultrathin dielectric layer. The exotic slow-light modes supported by such periodically trenched hyperbolic metamaterials efficiently trap incident radiation in massively parallel metal-insulator-metal tunnel junctions producing ultrafast infrared rectification via photon-assisted tunneling. This leads to a highly efficient photon-to-electron transduction with obtained photocurrent orders of magnitude larger than conventional lumped-element devices, such as nanorectennas and point-contact rectifiers. Our results promise an impact on infrared energy harvesters and plasmonic photodetectors.Electrical and Computer Engineerin
Generalized parity–time symmetry condition for enhanced sensor telemetry
Wireless sensors based on micromachined tunable resonators are important in a variety of applications, ranging from medical diagnosis to industrial and environmental monitoring. The sensitivity of these devices is, however, often limited by their low quality (Q) factor. Here, we introduce the concept of isospectral party–time–reciprocal scaling (PTX) symmetry and show that it can be used to build a new family of radiofrequency wireless microsensors exhibiting ultrasensitive responses and ultrahigh resolution, which are well beyond the limitations of conventional passive sensors. We show theoretically, and demonstrate experimentally using microelectromechanical-based wireless pressure sensors, that PTX-symmetric electronic systems share the same eigenfrequencies as their parity–time (PT)-symmetric counterparts, but crucially have different circuit profiles and eigenmodes. This simplifies the electronic circuit design and enables further enhancements to the extrinsic Q-factor of the sensors
Correction: Generalized parity-time symmetry condition for enhanced sensor telemetry (Nature Electronics (2018) DOI: 10.1038/s41928-018-0072-6)
© 2018 The Author(s). In the version of this Article originally published, a division symbol was mistakenly omitted from both of the y axis labels in Fig. 5a. The label in the left panel should have read \u27Re((ω×ω0)/2π) (MHz)\u27 and the label in the right panel should have read \u27Im((ω×ω0)/2π) (MHz)\u27. This has now been corrected