58 research outputs found

    Erratum: Integrin-FAK Signaling Rapidly and Potently Promotes Mitochondrial Function Through STAT3 (Cell Communication and Signaling (2016) 14 (32) DOI: 10.1186/s12964-016-0157-7)

    Get PDF
    Reference. Unfortunately, after publication of this article [1], it was noticed that the Acknowledgements and Funding sections were incomplete. The Acknowledgements section currently reads, “We are grateful for the technical support by Aruna Visavadiya, Ying Li, and Rhesa Dykes” and the Funding section currently reads, “This work was supported by NIH grant NS45734 and ETSU medical school funds”. The full, corrected sections can be seen below. Acknowledgements We are grateful for the technical support by Aruna Visavadiya, Ying Li, and Rhesa Dykes. Dr. Britta Engelhardt (Theodor Kocher institute) is thanked for providing the bEnd5 cells. Funding This work was supported by NIH grant NS45734 and in part by NIH grant C06RR0306551 and the ETSU College of Medicine. Further to this, a duplicate image in Fig. 4e was reported. The correct image is presented in this correction article. (Figure Presented)

    Transcriptional activation of endothelial cells by TGFβ coincides with acute microvascular plasticity following focal spinal cord ischaemia/reperfusion injury

    Get PDF
    Microvascular dysfunction, loss of vascular support, ischaemia and sub-acute vascular instability in surviving blood vessels contribute to secondary injury following SCI (spinal cord injury). Neither the precise temporal profile of the cellular dynamics of spinal microvasculature nor the potential molecular effectors regulating this plasticity are well understood. TGFβ (transforming growth factor β) isoforms have been shown to be rapidly increased in response to SCI and CNS (central nervous system) ischaemia, but no data exist regarding their contribution to microvascular dysfunction following SCI. To examine these issues, in the present study we used a model of focal spinal cord ischaemia/reperfusion SCI to examine the cellular response(s) of affected microvessels from 30 min to 14 days post-ischaemia. Spinal endothelial cells were isolated from affected tissue and subjected to focused microarray analysis of TGFβ-responsive/related mRNAs 6 and 24 h post-SCI. Immunohistochemical analyses of histopathology show neuronal disruption/loss and astroglial regression from spinal microvessels by 3 h post-ischaemia, with complete dissolution of functional endfeet (loss of aquaporin-4) by 12 h post-ischaemia. Coincident with this microvascular plasticity, results from microarray analyses show 9 out of 22 TGFβ-responsive mRNAs significantly up-regulated by 6 h post-ischaemia. Of these, serpine 1/PAI-1 (plasminogen-activator inhibitor 1) demonstrated the greatest increase (>40-fold). Furthermore, uPA (urokinase-type plasminogen activator), another member of the PAS (plasminogen activator system), was also significantly increased (>7.5-fold). These results, along with other select up-regulated mRNAs, were confirmed biochemically or immunohistochemically. Taken together, these results implicate TGFβ as a potential molecular effector of the anatomical and functional plasticity of microvessels following SCI

    Axonal Regeneration in the Sensory Dorsal Column Pathway

    No full text
    This review provides a short historical background to the field of axonal regeneration and discusses the advances made in over 100 studies between 2007 and 2012 in understanding the molecular mechanisms underlying the conditioning lesion and regeneration of primary sensory axons in the dorsal columns of the spinal cord. Treatment strategies to stimulate axon growth and reinnervation of the spinal cord through the dorsal root entry zone and of the dorsal column nuclei in the medulla are highlighted. Major breakthroughs have been made, e.g., reinnervating the nucleus gracilis in the medulla using neurotrophic factor gradients and grafts as relays and identifying chondroitin sulfate proteoglycan receptors. The experimental accessibility of the dorsal column axons has also resulted in new technological advances, including live imaging. Last, future directions are discussed, including some challenges of translation to humans

    Neurotrophins promote regeneration of sensory axons in the adult rat spinal cord

    No full text
    We have investigated the effects of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) on the intraspinal regeneration of anterogradely labeled axotomized ascending primary sensory fibers in the adult rat. These fibers were allowed to grow across a predegenerated peripheral nerve graft and back into the thoracic spinal cord. In control animals that had been infused with vehicle for two weeks into the dorsal column, 3 mm rostral to the nerve graft, essentially no fibers had extended from the nerve graft back into the spinal cord. The number of sensory fibers in the rostral end of the nerve graft was not significantly different between control and neurotrophin-infused animals. With infusion of NGF, 37±2% of the fibers at the rostral end of the graft had grown up to 0.5 mm into the dorsal column white matter, 30±2% up to 1 mm, 19±3% up to 2 mm and 8±2% up to 3 mm, i.e., the infusion site. With infusion of NT-3, sensory fiber outgrowth was similar to that seen with NGF, but with BDNF fewer fibers reached farther distances into the cord. Infusion of a mixture of all three neurotrophins did not increase the number of regenerating sensory fibers above that seen after infusion of the individual neurotrophins. These findings suggest that injured ascending sensory axons are responsive to all three neurotrophins and confirm our previous findings that neurotrophic factors can promote regeneration in the adult central nervous system
    corecore