17 research outputs found

    Oxygen Generation from Carbon Dioxide for Advanced Life Support

    Get PDF
    The partial electrochemical reduction of CO2 using ceramic oxygen generators (COGs) is well known and has been studied. Conventional COGs use yttria-stabilized zirconia (YSZ) electrolytes and operate at temperatures greater than 700 C (1, 2). Operating at a lower temperature has the advantage of reducing the mass of the ancillary components such as insulation. Moreover, complete reduction of metabolically produced CO2 (into carbon and oxygen) has the potential of reducing oxygen storage weight if the oxygen can be recovered. Recently, the University of Florida developed ceramic oxygen generators employing a bilayer electrolyte of gadolinia-doped ceria and erbia-stabilized bismuth oxide (ESB) for NASA s future exploration of Mars (3). The results showed that oxygen could be reliably produced from CO2 at temperatures as low as 400 C. These results indicate that this technology could be adapted to CO2 removal from a spacesuit and other applications in which CO2 removal is an issue. This strategy for CO2 removal in advanced life support systems employs a catalytic layer combined with a COG so that the CO2 is reduced completely to solid carbon and oxygen. First, to reduce the COG operating temperature, a thin, bilayer electrolyte was employed. Second, to promote full CO2 reduction while avoiding the problem of carbon deposition on the COG cathode, a catalytic carbon deposition layer was designed and the cathode utilized materials shown to be coke resistant. Third, a composite anode was used consisting of bismuth ruthenate (BRO) and ESB that has been shown to have high performance (4). The inset of figure 1 shows the conceptual design of the tubular COG and the rest of the figure shows schematically the test apparatus. Figure 2 shows the microstructure of a COG tube prior to testing. During testing, current is applied across the cell and initially CuO is reduced to copper metal by electrochemical pumping. Then the oxygen source becomes the CO/CO2. This presentation details the results of testing the COG

    Weak Decays Beyond Leading Logarithms

    Get PDF
    We review the present status of QCD corrections to weak decays beyond the leading logarithmic approximation including particle-antiparticle mixing and rare and CP violating decays. After presenting the basic formalism for these calculations we discuss in detail the effective hamiltonians for all decays for which the next-to-leading corrections are known. Subsequently, we present the phenomenological implications of these calculations. In particular we update the values of various parameters and we incorporate new information on m_t in view of the recent top quark discovery. One of the central issues in our review are the theoretical uncertainties related to renormalization scale ambiguities which are substantially reduced by including next-to-leading order corrections. The impact of this theoretical improvement on the determination of the Cabibbo-Kobayashi-Maskawa matrix is then illustrated in various cases.Comment: 229 pages, 32 PostScript figures (included); uses RevTeX, epsf.sty, rotate.sty, rmpbib.sty (included), times.sty (included; requires LaTeX 2e); complete PostScript version available at ftp://feynman.t30.physik.tu-muenchen.de/pub/preprints/tum-100-95.ps.gz or ftp://feynman.t30.physik.tu-muenchen.de/pub/preprints/tum-100-95.ps2.gz (scaled down and rotated version to print two pages on one sheet of paper
    corecore