92 research outputs found

    Feedback from active galactic nuclei: Energy- versus momentum-driving

    Get PDF
    We employ hydrodynamical simulations using the moving-mesh code AREPO to investigate the role of energy and momentum input from Active Galactic Nuclei (AGN) in driving large-scale galactic outflows. We start by reproducing analytic solutions for both energy- and momentum-driven outflowing shells in simulations of a spherical isolated dark matter potential with gas in hydrostatic equilibrium and with no radiative cooling. We confirm that for this simplified setup, galactic outflows driven by a momentum input rate of order L_Edd/c can establish an M_BH - sigma relation with slope and normalisation similar to that observed. We show that momentum input at a rate of L_Edd/c is however insufficient to drive efficient outflows once cooling and gas inflows as predicted by cosmological simulations at resolved scales are taken into account. We argue that observed large-scale AGN-driven outflows are instead likely to be energy-driven and show that such outflows can reach momentum fluxes exceeding 10 L_Edd/c within the innermost 10 kpc of the galaxy. The outflows are highly anisotropic, with outflow rates and a velocity structure found to be inadequately described by spherical outflow models. We verify that the hot energy-driven outflowing gas is expected to be strongly affected by metal-line cooling, leading to significant amounts (>10^9 M_sun) of entrained cold gas

    Probing delayed-end reionization histories with the 21-cm LAE cross-power spectrum

    Get PDF
    ABSTRACT We model the 21-cm signal and Lyman-α emitter (LAE) population evolution during the epoch of reionization in order to predict the 21-cm LAE cross-power spectrum. We employ high-dynamic-range simulations of the intergalactic medium to create models that are consistent with constraints from the cosmic microwave background, Lyman-α forest, and LAE population statistics. Using these models we consider the evolution of the cross-power spectrum for a selection of realistic reionization histories and predict the sensitivity of current and upcoming surveys to measuring this signal. We find that the imprint of a delayed end to reionization can be observed by future surveys, and that strong constraints can be placed on the progression of reionization as late as z = 5.7 using a Subaru–SKA survey. We make predictions for the signal-to-noise ratios achievable by combinations of Subaru/PFS (Prime Focus Spectrograph) with the MWA, LOFAR, HERA, and SKA interferometers for an integration time of 1000 h. We find that a Subaru–SKA survey could measure the cross-power spectrum for a late reionization at z = 6.6 with a total signal-to-noise ratio greater than 5, making it possible to constrain both the timing and bubble size at the end of reionization. Furthermore, we find that expanding the current Subaru/PFS survey area and depth by a factor of three would double the total signal-to-noise ratio.</jats:p

    Seeding high-redshift QSOs by collisional runaway in primordial star clusters

    Get PDF
    We study how runaway stellar collisions in high-redshift, metal-poor star clusters form very massive stars (VMSs) that can directly collapse to intermediate-mass black holes (IMBHs). We follow the evolution of a pair of neighbouring high-redshift mini-haloes with high-resolution, cosmological hydrodynamical zoom-in simulations using the adaptive mesh refinement code RAMSES combined with the non-equilibrium chemistry package KROME. The first collapsing mini-halo is assumed to enrich the central nuclear star cluster (NSC) of the other to a critical metallicity, sufficient for Population II (Pop. II) star formation at redshift z≈27z\approx27. Using the spatial configuration of the flattened, asymmetrical gas cloud forming in the core of the metal enriched halo, we set the initial conditions for simulations of an initially non-spherical star cluster with the direct summation code NBODY6 which are compared to about 2000 NBODY6 simulations of spherical star clusters for a wide range of star cluster parameters. The final mass of the VMS that forms depends strongly on the initial mass and initial central density of the NSC. For the initial central densities suggested by our RAMSES simulations, VMSs with mass > 400 M⊙_{\odot} can form in clusters with stellar masses of ≈104\approx10^4 M⊙_{\odot}, and this can increase to well over 1000 M⊙_{\odot} for more massive and denser clusters. The high probability we find for forming a VMS in these mini-haloes at such an early cosmic time makes collisional runaway of Pop. II star clusters a promising channel for producing large numbers of high-redshift IMBHs that may act as the seeds of supermassive black holes

    Fast cold gas in hot AGN outflows

    Get PDF
    Observations of the emission from spatially extended cold gas around bright high-redshift QSOs reveal surprisingly large velocity widths exceeding 2000 km s^(-1), out to projected distances as large as 30 kpc. The high velocity widths have been interpreted as the signature of powerful AGN-driven outflows. Naively, these findings appear in tension with hydrodynamic models in which AGN-driven outflows are energy-driven and thus very hot with typical temperatures T = 10^6-7 K. Using the moving-mesh code Arepo, we perform 'zoom-in' cosmological simulations of a z = 6 QSO and its environment, following black hole growth and feedback via energy-driven outflows. In the simulations, the QSO host galaxy is surrounded by a clumpy circum-galactic medium pre-enriched with metals due to supernovae-driven galactic outflows. As a result, part of the AGN-driven hot outflowing gas can cool radiatively, leading to large amounts (> 10^9 M_sun) of cold gas comoving with the hot bipolar outflow. This results in velocity widths of spatially extended cold gas similar to those observed. We caution, however, that gas inflows, random motions in the deep potential well of the QSO host galaxy and cooling of supernovae-driven winds contribute significantly to the large velocity width of the cold gas in the simulations, complicating the interpretation of observational data

    Numerical resolution effects on simulations of massive black hole seeds

    Get PDF
    We have performed high-resolution numerical simulations with the hydrodynamical AMR code Enzo to investigate the formation of massive seed black holes in a sample of six dark matter haloes above the atomic cooling threshold. The aim of this study is to illustrate the effects of varying the maximum refinement level on the final object formed. The virial temperatures of the simulated haloes range from T∼10000 K−16000 K\rm{T} \sim 10000\ \rm{K} - 16000\ \rm{K} and they have virial masses in the range M∼2×107M⊙\rm{M} \sim 2 \times 10^7 \rm{M_{\odot}} to M∼7×107M⊙\rm{M} \sim 7 \times 10^7 \rm{M_{\odot}} at z∼15z \sim 15. The outcome of our six fiducial simulations is both generic and robust. A rotationally supported, marginally gravitationally stable, disk forms with an exponential profile. The mass and scale length of this disk depends strongly on the maximum refinement level used. Varying the maximum refinement level by factors between 1 / 64 to 256 times the fiducial level illustrates the care that must be taken in interpreting the results. The lower resolution simulations show tentative evidence that the gas may become rotationally supported out to 20 pc while the highest resolution simulations show only weak evidence of rotational support due to the shorter dynamical times for which the simulation runs. The higher resolution simulations do, however, point to fragmentation at small scales of the order of ∼100\sim 100 AU. In the highest resolution simulations a central object of a few times 102 M⊙10^2\ \rm{M_{\odot}} forms with multiple strongly bound, Jeans unstable, clumps of ∼10 M⊙\sim 10\ \rm{M_{\odot}} and radii of 10 - 20 AU suggesting the formation of dense star clusters in these haloes
    • …
    corecore