10 research outputs found

    Enhanced RCP and large inverse magnetocaloric effect of CoFe2_2O4_4 nanoparticles synthesized by auto-combustion method

    Full text link
    This work focuses on the microstructure, magnetic properties and magnetocaloric effect of CoFe2_2O4_4 (CFO) nanoparticles elaborated by sol-gel auto combustion method. The XRD investigation indicates that CFO is crystallized in a cubic spinel structure and the SEM micrograph shows a fine quasi-spherical with an average grain sizes of 160 nm. The temperature dependence of the Raman spectra reveals the ferromagnetic to paramagnetic (FM-PM) transition started from 723 K and the magnetization versus temperature measurements shows the Curie temperature located at TC_{\rm C} = 785 K. Large value of magnetocaloric temperature change of Δ\DeltaT =11.2 K with a high RCP of 687.56 J Kg1^{-1} are achieved indirectly via the Maxwell approach making our CFO nanopowder suitable candidate for both environmentally friendly magnetic refrigeration and medical applications at ambient temperature

    Room-temperature magnetoelectric effect in lead-free multiferroic (1x)(1-x) Ba0.95_{0.95}Ca0.05_{0.05}Ti0.89_{0.89}Sn0.11_{0.11}O3_3-(x)(x)CoFe2_2O4_4 particulate composites

    Full text link
    Multiferroic particulate composites (1x)(1-x) Ba0.95_{0.95}Ca0.05_{0.05}Ti0.89_{0.89}Sn0.11_{0.11}O3_3-(x)(x)CoFe2_2O4_4 with (xx = 0.1, 0.2, 0.3, 0.4 and 0.5) have been prepared by mechanical mixing of the calcined and milled individual ferroic phases. X-ray diffraction and Raman spectroscopy analysis confirmed the formation of both perovskite Ba0.95_{0.95}Ca0.05_{0.05}Ti0.89_{0.89}Sn0.11_{0.11}O3_3 (BCTSn) and spinel CoFe2_2O4_4 (CFO) phases without the presence of additional phases. The morphological properties of the composites were provided by using Field Emission Scanning Electron Microscopy. The BCTSn-CFO composites exhibit multiferroic behavior at room temperature, as evidenced by ferroelectric and ferromagnetic hysteresis loops. The magnetoelectric (ME) coupling was measured under a magnetic field up to 10 kOe and the maximum ME response found to be 0.1 mV /cm/ Oe for the composition 0.7 BCTSn-0.3 CFO exhibiting a high degree of pseudo-cubicity and large density

    Electrocaloric effect and high energy storage efficiency in lead-free Ba0.95_{0.95}Ca0.05_{0.05}Ti0.89_{0.89}Sn0.11_{0.11}O3_3 ceramic elaborated by sol-gel method

    Full text link
    Structural, dielectric, ferroelectric, energy storage properties, and electrocaloric effect were studied in lead-free ceramic Ba0.95_{0.95}Ca0.05_{0.05}Ti0.89_{0.89}Sn0.11_{0.11}O3_3 (BCTSn) elaborated by sol-gel method. Phase purity structure was confirmed from X-ray data using Rietveld refinement analysis which revealed the coexistence of tetragonal (P4mm) and orthorhombic (Amm2) symmetries at room temperature. Phase transitions were detected by dielectric and differential scanning calorimetry results. Energy storage properties were determined from P-E hysteresis, and the electrocaloric properties were calculated indirectly via the Maxwell approach. The large value of electrocaloric temperature change of Δ\DeltaT=0.807 K obtained at a relatively small field of 30 kV cm1^{-1} and high energy storage efficiency can make BCTSn ceramic a promising candidate for environmentally friendly refrigeration and energy storage applications

    Magnetoelectric coupling in multiferroic CFO/BCTSn core shell nanofibers elaborated by co-axial electrospinning method

    Full text link
    Multiferroic CoFe2O4-Ba0.95Ca0.05Ti0.89Sn0.11O3 core-shell nanofibers (CFO@BCTSn NFs) were synthesized by a sol-gel co-axial electrospinning technique. The scanning electron microscope and transmission electron microscope were used to check nanofibers' core-shell structure/configuration. X-ray diffraction and a high-resolution transmission electron microscope were used to confirm the spinel structure of CFO and the perovskite structure of BCTSn. The magnetic character of the resultant CFO@BCTSn NFs was determined by SQUID magnetometry. The piezoelectricity was verified using piezo-response force microscopy, which revealed an entirely covered ferroelectric shell outline, in accordance with SEM and TEM observations. The magnetoelectric (ME) coefficient was measured as a function of the applied external DC magnetic field. The maximum ME coefficient obtained for the CFO@BCTSn NFs was 346 mV cm-1 Oe-1. The high magnetoelectric coupling suggests that CFO@BCTSn NFs could be a promising candidate for magnetic field sensor and magnetoelectric device applications

    Enhanced near-ambient temperature energy storage and electrocaloric effect in the lead-free BaTi0.89Sn0.11O3 ceramic synthesized by sol–gel method

    No full text
    International audienceLead-free perovskite materials with high performance have high potential in clean energy storage applications and developments of electrocaloric devices. In this work, we report structural, dielectric, ferroelectric properties, energy storage and electrocaloric effectnear the ambient temperature in barium stannate titanate (BaTi 0.89 Sn 0.11 O 3, BTS 11) ceramic prepared by a sol-gel method. The formation of a single perovskite structure was confirmed using the X-ray diffraction analysis. An average grain size of 18.5µm was found by the mean of the SEM micrograph with a density of 5.91 g/cm 3 .The presence of the multiphase at very near ambient temperature was proved using temperature-dependent micro-Raman measurements and differential scanning calorimetry. The BTS 11 ceramic exhibits a high dielectric constant of 15460and a low dielectric loss (<0.055) with considerable temperature stability. Moreover, a high energy storage density of 122mJ/cm 3 was showed with an efficiency of 79%, and a maximum value of ECE (ΔT) of 0.86 K and finally, an electrocaloric responsivity (ΔT/ΔE) of 0.24 K.mm/kV under the external electricfield of 35 kV/cm near ambient temperature. The enhanced dielectric, ferroelectric and electrocaloric properties in BTS 11 ceramic makes it a great potential candidate for its uses in solid-state cooling technology and high-energy storage applications near ambient temperature

    Room-temperature magnetoelectric effect in lead-free multiferroic (1−x) Ba0.95Ca0.05Ti0.89Sn0.11O3-(x)CoFe2O4 particulate composites

    No full text
    Multiferroic particulate composites (1−x) Ba0.95Ca0.05Ti0.89Sn0.11O3-(x)CoFe2O4 with (x = 0.1, 0.2, 0.3, 0.4 and 0.5) have been prepared by mechanical mixing of the calcined and milled individual ferroic phases. X-ray diffraction and Raman spectroscopy analysis confirmed the formation of both perovskite Ba0.95Ca0.05Ti0.89Sn0.11O3 (BCTSn) and spinel CoFe2O4 (CFO) phases without the presence of additional phases. The morphological properties of the composites were provided by using Field Emission Scanning Electron Microscopy. The BCTSn-CFO composites exhibit multiferroic behavior at room temperature, as evidenced by ferroelectric and ferromagnetic hysteresis loops. The magnetoelectric (ME) coupling was measured under a magnetic field up to 10 kOe and the maximum ME response found to be 0.1 mV /cm/ Oe for the composition 0.7 BCTSn-0.3 CFO exhibiting a high degree of pseudo-cubicity and large density

    Piezoelectric, magnetic and magnetoelectric properties of a new lead-free multiferroic (1-x) Ba0.95Ca0.05Ti0.89Sn0.11O3—(x) CoFe2O4 particulate composites

    No full text
    International audienceNew multiferroic particulate composites (1-x) Ba0.95Ca0.05Ti0.89Sn0.11O3-(x) CoFe2O4 with (x = 0.1, 0.2, 0.3, 0.4 and 0.5) have been prepared by mechanical mixing of the calcined and milled individual ferroic phases. X-ray diffraction and Raman spectroscopy analysis confirmed the formation of both perovskite Ba0.95Ca0.05Ti0.89Sn0.11O3 (BCTSn) and spinel CoFe2O4 (CFO) phases without the presence of additional phases. The morphological properties of the composites were provided by using field emission scanning electron microscopy. The BCTSn-CFO composites exhibit multiferroic behavior at room temperature, as evidenced by ferroelectric and ferromagnetic hysteresis loops. For all composites, the converse piezoelectric coefficient was calculated and found to decrease from 203 pm.V-1 to 27 pm.V-1 in pure BCTSn. when the CFO content increases. The magnetoelectric (ME) coupling was measured under a magnetic field up to 10 kOe and the maximum ME response found to be 0.1 mV.cm(-1).Oe(-1) for the composition 0.7 BCTSn-0.3 CFO exhibiting a high degree of pseudo-cubicity and large density

    Electrocaloric effect and high energy storage efficiency in lead-free Ba0.95Ca0.05Ti0.89Sn0.11O3 ceramic elaborated by sol-gel method

    No full text
    International audienceStructural, dielectric, ferroelectric, energy storage properties, and electrocaloric effect were studied in lead-free ceramic Ba0.95Ca0.05Ti0.89Sn0.11O3 (BCTSn) elaborated by the sol-gel method. Phase purity structure was confirmed from X-ray data using the Rietveld refinement analysis which revealed the coexistence of tetragonal (P4mm) and orthorhombic (Amm2) symmetries at room temperature. Phase transitions were detected by dielectric and differential scanning calorimetry measurements. The energy storage properties were determined from P-E hysteresis, and the electrocaloric properties were calculated indirectly via the Maxwell approach. The large value of electrocaloric temperature change of Delta T = 0.807 K obtained at a relatively small electric field of 30 kV cm(-1), and the high energy storage efficiency can make BCTSn ceramic a promising candidate for environmentally friendly refrigeration and energy storage applications

    Impact of Polymeric precursor and Auto-combustion on the Structural, Microstructural, Magnetic, and Magnetocaloric Properties of La0.8Sr0.2MnO3

    No full text
    International audienceIn this work, La0.8Sr0.2MnO3 (LSMO) nanopowders are synthesized using two different methods: Pechini (LSMO-PC) and auto-combustion (LSMO-AC). Nanoparticle sizes, structural, magnetic, and magnetocaloric properties were determined and compared. The X-ray diffraction confirms the coexistence of two phases; rhombohedral symmetry with space group R-3c and orthorhombic symmetry with space group Pbnm, with the rhombohedral phase dominating. The scanning electron microscope images show that LSMO-PC has larger nanoparticle sizes (∼ 495 nm) than LSMO-AC (∼195 nm). The samples exhibit ferromagnetic properties with distinct hysteresis loops and Curie temperatures 340 K and 290 K for LSMO-PC and LSMO-AC respectively. The variation of the magnetic entropy was measured indirectly using the Maxwell approach with increasing magnetic field. For LSMO-PC it reaches a maximum -ΔSM=1.69 J/kg.K at 340 K and ΔH= 5 T. The associated adiabatic temperature change ΔTM is 1.04 K. While LSMO-PC demonstrates superior magnetic and magnetocaloric properties, LSMO-AC displays significant magnetocaloric thermal stability. The obtained values make LSMO-PC and LSMO-AC promising candidates for eco-friendly room-temperature magnetocaloric applications
    corecore