12,595 research outputs found

    Universal linear-temperature resistivity: possible quantum diffusion transport in strongly correlated superconductors

    Full text link
    The strongly correlated electron fluids in high temperature cuprate superconductors demonstrate an anomalous linear temperature (TT) dependent resistivity behavior, which persists to a wide temperature range without exhibiting saturation. As cooling down, those electron fluids lose the resistivity and condense into the superfluid. However, the origin of the linear-TT resistivity behavior and its relationship to the strongly correlated superconductivity remain a mystery. Here we report a universal relation dρ/dT=(μ0kB/)λL2d\rho/dT=(\mu_0k_B/\hbar)\lambda^2_L, which bridges the slope of the linear-TT-dependent resistivity (dρ/dTd\rho/dT) to the London penetration depth λL\lambda_L at zero temperature among cuprate superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} and heavy fermion superconductors CeCoIn5_5, where μ0\mu_0 is vacuum permeability, kBk_B is the Boltzmann constant and \hbar is the reduced Planck constant. We extend this scaling relation to different systems and found that it holds for other cuprate, pnictide and heavy fermion superconductors as well, regardless of the significant differences in the strength of electronic correlations, transport directions, and doping levels. Our analysis suggests that the scaling relation in strongly correlated superconductors could be described as a hydrodynamic diffusive transport, with the diffusion coefficient (DD) approaching the quantum limit D/mD\sim\hbar/m^*, where mm^* is the quasi-particle effective mass.Comment: 8 pages, 2 figures, 1 tabl

    Parameter-tuning Networks: Experiments and Active Walk Model

    Full text link
    The tuning process of a large apparatus of many components could be represented and quantified by constructing parameter-tuning networks. The experimental tuning of the ion source of the neutral beam injector of HT-7 Tokamak is presented as an example. Stretched-exponential cumulative degree distributions are found in the parameter-tuning networks. An active walk model with eight walkers is constructed. Each active walker is a particle moving with friction in an energy landscape; the landscape is modified by the collective action of all the walkers. Numerical simulations show that the parameter-tuning networks generated by the model also give stretched exponential functions, in good agreement with experiments. Our methods provide a new way and a new insight to understand the action of humans in the parameter-tuning of experimental processes, is helpful for experimental research and other optimization problems.Comment: 4 pages, 5 figure

    Exact solution of gyration radius of individual's trajectory for a simplified human mobility model

    Full text link
    Gyration radius of individual's trajectory plays a key role in quantifying human mobility patterns. Of particular interests, empirical analyses suggest that the growth of gyration radius is slow versus time except the very early stage and may eventually arrive to a steady value. However, up to now, the underlying mechanism leading to such a possibly steady value has not been well understood. In this Letter, we propose a simplified human mobility model to simulate individual's daily travel with three sequential activities: commuting to workplace, going to do leisure activities and returning home. With the assumption that individual has constant travel speed and inferior limit of time at home and work, we prove that the daily moving area of an individual is an ellipse, and finally get an exact solution of the gyration radius. The analytical solution well captures the empirical observation reported in [M. C. Gonz`alez et al., Nature, 453 (2008) 779]. We also find that, in spite of the heterogeneous displacement distribution in the population level, individuals in our model have characteristic displacements, indicating a completely different mechanism to the one proposed by Song et al. [Nat. Phys. 6 (2010) 818].Comment: 4 pages, 4 figure

    Study on the scope that subway engineering influence the price of peripheral real estate

    Get PDF
    AbstractAccording to the problem that in what scope can subway engineering influence the prices of peripheral real estate, this paper summarized the problems in similar research presented, and put forward that the influence is taken by factors of person, and the influence can be studied by the probability of choosing subway. Different from other similar research, based on the analysis of the factors which can influence people choose subway or not, this paper constructs the logistic model. Testing the model by using the research data of Beijing, this paper get the list on which we know in what scope can subway engineering influence the surrounding real estate prices by adjusting the logistic model variable X4. Finally, discussed the model applicability and in different cities to application

    2-Amino-4-(4-hy­droxy-3,5-dimeth­oxy­phen­yl)-6-phenyl­nicotinonitrile

    Get PDF
    In the title compound, C20H17N3O3, the dihedral angles between the central pyridine ring and the two terminal rings are 15.07 (3) and 43.24 (3)°. The dihedral angle between the two terminal rings is 37.49 (4)° In the crystal, inter­molecular amine N—H⋯Nnitrile hydrogen-bonding inter­actions form inversion dimers, which are linked into chains through amine N—H⋯Ometh­oxy hydrogen bonds
    corecore