17 research outputs found

    Vaccination with an Inactivated Virulent Feline Immunodeficiency Virus Engineered to Express High Levels of Env

    Get PDF
    An inactivated virus vaccine was prepared from a pathogenic isolate of feline immunodeficiency virus containing a mutation that eliminated an endocytic sorting signal in the envelope glycoprotein, increasing its expression on virions. Cats immunized with inactivated preparations of this modified virus exhibited strong titers of antibody to Env by enzyme-linked immunosorbent assay. Evidence of protection following challenge demonstrated the potential of this approach to lentiviral vaccination

    Modulation of feline immunodeficiency virus infection by stromal cell-derived factor (SDF-1)

    No full text
    The α-chemokine receptor CXCR4 has recently been shown to support syncytium formation mediated by strains of feline immunodeficiency virus (FIV) that have been selected for growth in the Crandell feline kidney cell line (CrFK-tropic virus). Given that both human and feline CXCR4 support syncytium formation mediated by FIV, we investigated whether human stromal cell-derived factor (SDF-1) would inhibit infection with FIV. Human SDF-1α and SDF-1β bound with a high affinity (KD s of 12.0 and 10.4 nM, respectively) to human cells stably expressing feline CXCR4, and treatment of CrFK cells with human SDF-1α resulted in a dose-dependent inhibition of infection by FIVPET. No inhibitory activity was detected when the interleukin-2 (IL-2)-dependent feline T-cell line Mya-1 was used in place of CrFK cells, suggesting the existence of a CXCR4-independent mechanism of infection. Furthermore, neither the human β-chemokines RANTES, MIP-1α, MIP-1β, and MCP-1 nor the α-chemokine IL-8 had an effect on infection of either CrFK or Mya-1 cells with CrFK-tropic virus. Envelope glycoprotein purified from CrFK-tropic virus competed specifically for binding of SDF-1α to feline CXCR4 and CXCR4 expression was reduced in FIV-infected cells, suggesting that the inhibitory activity of SDF-1α in CrFK cells may be the result of steric hindrance of the virus-receptor interaction following the interaction between SDF and CXCR4. Prolonged incubation of CrFK cells with SDF-1α led to an enhancement rather than an inhibition of infection. Flow cytometric analysis revealed that this effect may be due largely to up-regulation of CXCR4 expression by SDF-1α on CrFK cells, an effect mimicked by treatment of the cells with phorbol myristate acetate. The data suggest that infection of feline cells with FIV can be mediated by CXCR4 and that, depending on the assay conditions, infection can be either inhibited or enhanced by SDF-1α. Infection with FIV may therefore prove a valuable model in which to study the development of novel therapeutic interventions for the treatment of AIDS

    Modulation of feline immunodeficiency virus infection by stromal cell-derived factor (SDF-1)

    No full text
    The α-chemokine receptor CXCR4 has recently been shown to support syncytium formation mediated by strains of feline immunodeficiency virus (FIV) that have been selected for growth in the Crandell feline kidney cell line (CrFK-tropic virus). Given that both human and feline CXCR4 support syncytium formation mediated by FIV, we investigated whether human stromal cell-derived factor (SDF-1) would inhibit infection with FIV. Human SDF-1α and SDF-1β bound with a high affinity (KD s of 12.0 and 10.4 nM, respectively) to human cells stably expressing feline CXCR4, and treatment of CrFK cells with human SDF-1α resulted in a dose-dependent inhibition of infection by FIVPET. No inhibitory activity was detected when the interleukin-2 (IL-2)-dependent feline T-cell line Mya-1 was used in place of CrFK cells, suggesting the existence of a CXCR4-independent mechanism of infection. Furthermore, neither the human β-chemokines RANTES, MIP-1α, MIP-1β, and MCP-1 nor the α-chemokine IL-8 had an effect on infection of either CrFK or Mya-1 cells with CrFK-tropic virus. Envelope glycoprotein purified from CrFK-tropic virus competed specifically for binding of SDF-1α to feline CXCR4 and CXCR4 expression was reduced in FIV-infected cells, suggesting that the inhibitory activity of SDF-1α in CrFK cells may be the result of steric hindrance of the virus-receptor interaction following the interaction between SDF and CXCR4. Prolonged incubation of CrFK cells with SDF-1α led to an enhancement rather than an inhibition of infection. Flow cytometric analysis revealed that this effect may be due largely to up-regulation of CXCR4 expression by SDF-1α on CrFK cells, an effect mimicked by treatment of the cells with phorbol myristate acetate. The data suggest that infection of feline cells with FIV can be mediated by CXCR4 and that, depending on the assay conditions, infection can be either inhibited or enhanced by SDF-1α. Infection with FIV may therefore prove a valuable model in which to study the development of novel therapeutic interventions for the treatment of AIDS

    Lessons from the cat: use of feline immunodeficiency virus (FIV) as a means to develop intervention strategies effective against human immunodeficiency virus type 1 (HIV-1)

    No full text
    In July 1997 the Division of AIDS of the National Institute of Allergy and Infectious Diseases sponsored a workshop entitled "Use of the FTV/Cat Model for Development of Anti-HIV Vaccines and Therapeutics." The purpose of this workshop was to provide a forum for presenting new data arising from FIV research, assess the utility of the FTV/cat model, identify areas applicable to HTV/AIDS research, and solicit input from investigators on scientific gaps that can benefit from additional support.* The meeting brought to the fore numerous areas where the FTV/cat model can serve as a valuable tool for developing new therapeutic strategies and vaccine designs applicable to the treatment and prevention of HIV-1 infection

    Lessons from the cat: use of feline immunodeficiency virus (FIV) as a means to develop intervention strategies effective against human immunodeficiency virus type 1 (HIV-1)

    No full text
    In July 1997 the Division of AIDS of the National Institute of Allergy and Infectious Diseases sponsored a workshop entitled "Use of the FTV/Cat Model for Development of Anti-HIV Vaccines and Therapeutics." The purpose of this workshop was to provide a forum for presenting new data arising from FIV research, assess the utility of the FTV/cat model, identify areas applicable to HTV/AIDS research, and solicit input from investigators on scientific gaps that can benefit from additional support.* The meeting brought to the fore numerous areas where the FTV/cat model can serve as a valuable tool for developing new therapeutic strategies and vaccine designs applicable to the treatment and prevention of HIV-1 infection
    corecore