36,723 research outputs found
Wind energy system time-domain (WEST) analyzers
A portable analyzer which simulates in real time the complex nonlinear dynamics of horizontal axis wind energy systems was constructed. Math models for an aeroelastic rotor featuring nonlinear aerodynamic and inertial terms were implemented with high speed digital controllers and analog calculation. This model was combined with other math models of elastic supports, control systems, a power train and gimballed rotor kinematics. A stroboscopic display system graphically depicting distributed blade loads, motion, and other aerodynamic functions on a cathode ray tube is included. Limited correlation efforts showed good comparison between the results of this analyzer and other sophisticated digital simulations. The digital simulation results were successfully correlated with test data
Metal-metal reinforced laminar composites
Two prototype laminar composites have shown potential for high strength and high temperature applications. These composites might be made with less in-place anisotropy and be less expensive than comparable fiber composites
Terminal sterilization process calculation for spacecraft
Mathematical model for calculating terminal sterilization process for interplanetary spacecraf
Determination of Terminal Sterilization Process Parameters
Time, temperature, and microbial effects on terminal heat sterilization of spacecraf
WEST-3 wind turbine simulator development
The software developed for WEST-3, a new, all digital, and fully programmable wind turbine simulator is given. The process of wind turbine simulation on WEST-3 is described in detail. The major steps are, the processing of the mathematical models, the preparation of the constant data, and the use of system software generated executable code for running on WEST-3. The mechanics of reformulation, normalization, and scaling of the mathematical models is discussed in detail, in particulr, the significance of reformulation which leads to accurate simulations. Descriptions for the preprocessor computer programs which are used to prepare the constant data needed in the simulation are given. These programs, in addition to scaling and normalizing all the constants, relieve the user from having to generate a large number of constants used in the simulation. Also given are brief descriptions of the components of the WEST-3 system software: Translator, Assembler, Linker, and Loader. Also included are: details of the aeroelastic rotor analysis, which is the center of a wind turbine simulation model, analysis of the gimbal subsystem; and listings of the variables, constants, and equations used in the simulation
Tunable coupling in circuit quantum electrodynamics with a superconducting V-system
Recent progress in superconducting qubits has demonstrated the potential of
these devices for the future of quantum information processing. One desirable
feature for quantum computing is independent control of qubit interactions as
well as qubit energies. We demonstrate a new type of superconducting charge
qubit that has a V-shaped energy spectrum and uses quantum interference to
provide independent control over the qubit energy and dipole coupling to a
superconducting cavity. We demonstrate dynamic access to the strong coupling
regime by tuning the coupling strength from less than 200 kHz to more than 40
MHz. This tunable coupling can be used to protect the qubit from cavity-induced
relaxation and avoid unwanted qubit-qubit interactions in a multi-qubit system.Comment: 5 pages, 4 figure
Pyrotechnic shock analysis and testing methods
Pyrotechnic shock analysis and testing methods for Ranger and Mariner spacecraft measurement
ETARA PC version 3.3 user's guide: Reliability, availability, maintainability simulation model
A user's manual describing an interactive, menu-driven, personal computer based Monte Carlo reliability, availability, and maintainability simulation program called event time availability reliability (ETARA) is discussed. Given a reliability block diagram representation of a system, ETARA simulates the behavior of the system over a specified period of time using Monte Carlo methods to generate block failure and repair intervals as a function of exponential and/or Weibull distributions. Availability parameters such as equivalent availability, state availability (percentage of time as a particular output state capability), continuous state duration and number of state occurrences can be calculated. Initial spares allotment and spares replenishment on a resupply cycle can be simulated. The number of block failures are tabulated both individually and by block type, as well as total downtime, repair time, and time waiting for spares. Also, maintenance man-hours per year and system reliability, with or without repair, at or above a particular output capability can be calculated over a cumulative period of time or at specific points in time
Instrument for measuring thin-film belt lengths
Instrument consists of base, vernier height gauge, sliding block, and balance-beam assembly with tension weight. Pulley bracket is provided with three pulley mounting holes, 4 inches apart, to accommodate widely different belt lengths. Instrument is accurate to within 0.001 inch and is suitable for commercial production
- …