38 research outputs found

    A qualitative and quantitative model for climate-driven lake formation on carbonate platforms based on examples from the Bahamian archipelago

    Get PDF
    Lakes on carbonate platform islands such as the Bahamas display wide variability in morphometry, chemistry, and fauna. These parameters are ultimately driven by climate, sea level, and carbonate accumulation and dissolution. The authors propose a model that integrates climatological, geomorphological, and stratigraphic frameworks to understand processes of carbonate-hosted lake formation and limnological characteristics in modern day environments, with applications to carbonate lake sedimentary records. Fifty-two lakes from San Salvador Island and Eleuthera, Bahamas, were examined for water chemistry, basin morphology, conduit development, conductivity, and major ions. Using non-metric, multi-dimensional scaling ordination methods, the authors derived a model dividing lakes into either constructional or destructional formational modes. Constructional lakes were further divided into pre-highstand and highstand types based on whether their formation occurred during a marine regressive or transgressive phase. Destructional lakes are created continually by dissolution of bedrock at fresh/saline water interfaces and their formation is therefore related to changing climate and sea level. This model shows that lake formation is influenced by the hydrologic balance associated with climatic conditions that drives karst dissolution as well as the deposition of aeolian dune ridges that isolate basins due to sea-level fluctuations. It allows for testing and examining the climatic and hydrologic regime as related to carbonate accumulation and dissolution through time, and for an improved understanding of lake sensitivity and response to climate as preserved in the lacustrine sedimentary record

    Similar NF-κB Gene Signatures in TNF-α Treated Human Endothelial Cells and Breast Tumor Biopsies

    Get PDF
    BACKGROUND: Endothelial dysfunction has been implicated in the pathogenesis of diverse pathologies ranging from vascular and immune diseases to cancer. TNF-α is one of the mediators of endothelial dysfunction through the activation of transcription factors, including NF-κB. While HUVEC (macrovascular cells) have been largely used in the past, here, we documented an NF-κB gene signature in TNFα-stimulated microvascular endothelial cells HMEC often used in tumor angiogenesis studies. METHODOLOGY/PRINCIPAL FINDINGS: We measured mRNA expression of 55 NF-κB related genes using quantitative RT-PCR in HUVEC and HMEC. Our study identified twenty genes markedly up-regulated in response to TNFα, including adhesion molecules, cytokines, chemokines, and apoptosis regulators, some of them being identified as TNF-α-inducible genes for the first time in endothelial cells (two apoptosis regulators, TNFAIP3 and TNFRSF10B/Trail R2 (DR5), the chemokines GM-CSF/CSF2 and MCF/CSF1, and CD40 and TNF-α itself, as well as NF-κB components (RELB, NFKB1 or 50/p105 and NFKB2 or p52/p100). For eight genes, the fold induction was much higher in HMEC, as compared to HUVEC. Most importantly, our study described for the first time a connection between NF-κB activation and the induction of most, if not all, of these genes in HMEC as evaluated by pharmacological inhibition and RelA expression knock-down by RNA interference. Moreover, since TNF-α is highly expressed in tumors, we further applied the NF-κB gene signature documented in TNFα-stimulated endothelial cells to human breast tumors. We found a significant positive correlation between TNF and the majority (85 %) of the identified endothelial TNF-induced genes in a well-defined series of 96 (48 ERα positive and 48 ERα negative) breast tumors. CONCLUSION/SIGNIFICANCE: Taken together these data suggest the potential use of this NF-κB gene signature in analyzing the role of TNF-α in the endothelial dysfunction, as well as in breast tumors independently of the presence of ERα

    The Mammalian Disaggregase Machinery: Hsp110 Synergizes with Hsp70 and Hsp40 to Catalyze Protein Disaggregation and Reactivation in a Cell-Free System

    Get PDF
    Bacteria, fungi, protozoa, chromista and plants all harbor homologues of Hsp104, a AAA+ ATPase that collaborates with Hsp70 and Hsp40 to promote protein disaggregation and reactivation. Curiously, however, metazoa do not possess an Hsp104 homologue. Thus, whether animal cells renature large protein aggregates has long remained unclear. Here, it is established that mammalian cytosol prepared from different sources possesses a potent, ATP-dependent protein disaggregase and reactivation activity, which can be accelerated and stimulated by Hsp104. This activity did not require the AAA+ ATPase, p97. Rather, mammalian Hsp110 (Apg-2), Hsp70 (Hsc70 or Hsp70) and Hsp40 (Hdj1) were necessary and sufficient to slowly dissolve large disordered aggregates and recover natively folded protein. This slow disaggregase activity was conserved to yeast Hsp110 (Sse1), Hsp70 (Ssa1) and Hsp40 (Sis1 or Ydj1). Hsp110 must engage substrate, engage Hsp70, promote nucleotide exchange on Hsp70, and hydrolyze ATP to promote disaggregation of disordered aggregates. Similarly, Hsp70 must engage substrate and Hsp110, and hydrolyze ATP for protein disaggregation. Hsp40 must harbor a functional J domain to promote protein disaggregation, but the J domain alone is insufficient. Optimal disaggregase activity is achieved when the Hsp40 can stimulate the ATPase activity of Hsp110 and Hsp70. Finally, Hsp110, Hsp70 and Hsp40 fail to rapidly remodel amyloid forms of the yeast prion protein, Sup35, or the Parkinson's disease protein, alpha-synuclein. However, Hsp110, Hsp70 and Hsp40 enhanced the activity of Hsp104 against these amyloid substrates. Taken together, these findings suggest that Hsp110 fulfils a subset of Hsp104 activities in mammals. Moreover, they suggest that Hsp104 can collaborate with the mammalian disaggregase machinery to rapidly remodel amyloid conformers

    Tracing Groundwater Geochemistry Using δ\u3csup\u3e13\u3c/sup\u3eC on San Salvador Island (Southeastern Bahamas): Impliations for Carbonate Island Hydrogeology and Dissolution

    No full text
    Mixing dissolution is a widely accepted process of karstification on carbonate platforms, but regional differences in climate and geology indicate that a universal application of this model is insufficient to assess water– limestone interactions in more specific island settings. A two-phase study investigating δ13C, carbon concentration, and other geochemical parameters took place on San Salvador Island, The Bahamas, to better understand its hydrologic characteristics and identify local controls on dissolution. In the initial phase, Crescent Pond and adjacent Crescent Top Cave, both with conduit connections to one another and to open marine water, were monitored over 1.5 normal tidal cycles and found to have little geochemical variation. Contrasting geochemical compositions between these two sites and the ocean illustrates the complexity of subsurface hydrology, while lower pH and δ13CDIC values in the cave suggest the potential for bacterially mediated dissolution. The second phase included a more comprehensive geochemical survey of 12 of the island’s surface/ subsurface water bodies, and found that water geochemistry was governed primarily by connectivity to the ocean and secondarily by topographic and vegetative settings. Geochemical relationships illustrated by regression analyses showed that biologic activity exerted additional controls over water geochemistry, with photosynthesis removing biotically respired CO2 and elevating organic carbon in surface waters, while biotically respired CO2 accumulates and supports dissolution in the subsurface. These data underscore the importance of including the role of biotic processes with climate and geologic settings when identifying dissolution mechanisms and using them to estimate modern and historical dissolution processes

    Assessing Selected Natural and Anthropogenic Impacts on Freshwater Lens Morphology on Small Barrier Islands: Dog Island and St. George Island, Florida, USA

    No full text
    The freshwater lens morphologies of the barrier islands Dog Island and St. George Island on the panhandle coast of Florida (FL), USA, are controlled to varying degrees by both natural and anthropogenic factors. Variable-density groundwater flow models confirm that spatial variability of recharge values can account for the observed lens asymmetry on these islands. The depth to the base of the lens does not vary significantly seasonally. Human development has altered recharge patterns in some areas, locally thinning the freshwater lens. Aqueduct water supply to St. George Island represents ∼7–25% of natural recharge; higher recharge rates are required to simulate the lens on St. George Island than on Dog Island. On both islands, coastal erosion rates are sufficiently rapid that the freshwater lens may not be in equilibrium with current boundary conditions

    Revista de la OIM sobre migraciones en América Latina

    Get PDF
    The 14 Dependent Territories governed by the United Kingdom (UK) Foreign and Commonwealth Office include in alphabetic order Anguilla, Ascension Island and Tristan da Cunha, British Antarctic Territory, Bermuda, British Indian Ocean Territory, British Virgin Islands, Cayman Islands, Falkland Islands, Gibraltar, Montserrat, Pitcairn Island, St Helena, South Georgia and South Sandwich Islands, Sovereign Base Areas on Cyprus and the Turks and Caicos Islands (Fig. 1.1). UK governance responsibilities for these territories include the strengthening of democracy, environmental protection, improvement of public services and law enforcement (Oldfield and Sheppard 1997
    corecore