315 research outputs found

    Rebuttal to "Comment by V.M. Krasnov on 'Counterintuitive consequence of heating in strongly-driven intrinsic junctions of Bi2Sr2CaCu2O8+d Mesas' "

    Get PDF
    In our article [1], we found that with increasing dissipation there is a clear, systematic shift and sharpening of the conductance peak along with the disappearance of the higher-bias dip/hump features (DHF), for a stack of intrinsic Josephson junctions (IJJs) of intercalated Bi2Sr2CaCu2O8+{\delta} (Bi2212). Our work agrees with Zhu et al [2] on unintercalated, pristine Bi2212, as both studies show the same systematic changes with dissipation. The broader peaks found with reduced dissipation [1,2] are consistent with broad peaks in the density-of-states (DOS) found among scanning tunneling spectroscopy [3] (STS), mechanical contact tunneling [4] (MCT) and inferred from angle (momentum) resolved photoemission spectroscopy [5] (ARPES); results that could not be ignored. Thus, sharp peaks are extrinsic and cannot correspond to the superconducting DOS. We suggested that the commonality of the sharp peaks in our conductance data, which is demonstrably shown to be heating-dominated, and the peaks of previous intrinsic tunneling spectroscopy (ITS) data implies that these ITS reports might need reinterpretation.Comment: Rebuttal to Comment of Krasnov arXiv:1007.451

    Single Junction and Intrinsic Josephson Junction Tunneling Spectroscopies of Bi2Sr2CaCu2O8+d

    Get PDF
    Tunneling spectroscopy measurements are reported on optimally-doped and overdoped Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} single crystals. A novel point contact method is used to obtain superconductor-insulator-normal metal (SIN) and SIS break junctions as well as intrinsic Josephson junctions (IJJ) from nanoscale crystals. Three junction types are obtained on the same crystal to compare the quasiparticle peaks and higher bias dip/hump structures which have also been found in other surface probes such as scanning tunneling spectroscopy and angle-resolved photoemission spectroscopy. However, our IJJ quasiparticle spectra consistently reveal very sharp conductance peaks and no higher bias dip structures. The IJJ conductance peak voltage divided by the number of junctions in the stack consistently leads to a significant underestimate of Δ\Delta when compared to the single junction values. The comparison of the three methods suggests that the markedly different characteristics of IJJ are a consequence of nonequilibrium effects and are not intrinsic quasiparticle features.Comment: 4 pages, 4 figures; presented at the Applied Superconductivity Conference (October 3-8, 2004) in Jacksonville, FL; to be published in IEEE Trans. Appl. Supercon

    Superconductivity and Cobalt Oxidation State in Metastable Na(x)CoO(2-delta)*yH2O (x ~ 1/3; y ~ 4x)

    Full text link
    We report the synthesis and superconducting properties of a metastable form of the known superconductor NaxCoO2*yH2O (x ~ 1/3, y ~ 4x). Instead of using the conventional bromine-acetonitrile mixture for sodium deintercalation, we use an aqueous bromine solution. Using this method, we oxidize the sample to a point that the sodium cobaltate becomes unstable, leading to formation of other products if not controlled. This compound has the same structure as the reported superconductor, yet it exhibits a systematic variation of the superconducting transition temperature (Tc) as a function of time. Immediately after synthesis, this compound is not a superconductor, even though it contains appropriate amounts of sodium and water. The samples become superconducting with low Tc values after ~ 90 h. Tc continually increases until it reaches a maximum value (4.5 K) after about 260 h. Then Tc drops drastically, becoming non-superconducting approximately 100 h later. Corresponding time-dependent neutron powder diffraction data shows that the changes in superconductivity exhibited by the metastable cobaltate correspond to slow formation of oxygen vacancies in the CoO2 layers. In effect, the formation of these defects continually reduces the cobalt oxidation state causing the sample to evolve through its superconducting life cycle. Thus, the dome-shaped superconducting phase diagram is mapped as a function of cobalt oxidation state using a single sample. The width of this dome based on the formal oxidation state of cobalt is very narrow - approximately 0.1 valence units wide. Interestingly, the maximum Tc in NaxCoO2*yH2O occurs when the cobalt oxidation state is near 3.5. Thus, we speculate that the maximum Tc occurs near the charge ordered insulating state that correlates with the average cobalt oxidation state of 3.5.Comment: 22 pages, 9 figures, 1 tabl

    The Effect of Condensed Tannins in Lotus spp. on the Lesser Migratory Grasshopper

    Get PDF
    Hatchling grasshoppers (Melanoplus sanguinipes Fab.) fed one accession of field grown big trefoil (Lotus uliginosis Schkuhr) containing a tannin content of 56 mg. g-1 FW, had a significantly lower mean weight than hatchlings fed field grown Lotus species and accessions with lower tannin content. Adult female grasshoppers fed L. uliginosis foliage with 32.3 mg.g-1 FW tannin also ate more feed and had a 2-fold higher gut trypsin and chymotrypsin activity than adults fed low tannin L. corniculatus foliage (0.13 mg.g-1 FW tannin). In more controlled experiments, growth at 20o C or 30o C was used to increase tannin in rooted cuttings of L. uliginosis to concentrations ranging from 7 to 195 mg.g-1 FW. Hatchling weight decreased as a function of dietary tannin concentration when fed these clones. Both hatchling weight and survival were affected when hatchlings were fed pelleted wheat seedlings supplemented with purified L. uliginosis tannin preparations

    Helium irradiation effects in polycrystalline Si, silica, and single crystal Si

    Get PDF
    Transmission electron microscopy (TEM) has been used to investigate the effects of room temperature 6 keV helium ion irradiation of a thin (≈55 nm thick) tri-layer consisting of polycrystalline Si, silica, and single-crystal Si. The ion irradiation was carried out in situ within the TEM under conditions where approximately 24% of the incident ions came to rest in the specimen. This paper reports on the comparative development of irradiation-induced defects (primarily helium bubbles) in the polycrystalline Si and single-crystal Si under ion irradiation and provides direct measurement of a radiation-induced increase in the width of the polycrystalline layer and shrinkage of the silica layer. Analysis using TEM and electron energy-loss spectroscopy has led to the hypothesis that these result from helium-bubble-induced swelling of the silicon and radiation-induced viscoelastic flow processes in the silica under the influence of stresses applied by the swollen Si layers. The silicon and silica layers are sputtered as a result of the helium ion irradiation; however, this is estimated to be a relatively minor effect with swelling and stress-related viscoelastic flow being the dominant mechanisms of dimensional change

    On the correct formula for the lifetime broadened superconducting density of states

    Full text link
    We argue that the well known Dynes formula [Dynes R C {\it et al.} 1978 {\it Phys. Rev. Lett.} {\bf 41} 1509] for the superconducting quasiparticle density of states, which tries to incorporate the lifetime broadening in an approximate way, cannot be justified microscopically for conventional superconductors. Instead, we propose a new simple formula in which the energy gap has a finite imaginary part −Δ2-\Delta_2 and the quasiparticle energy is real. We prove that in the quasiparticle approximation 2Δ2\Delta_2 gives the quasiparticle decay rate at the gap edge for conventional superconductors. This conclusion does not depend on the nature of interactions that cause the quasiparticle decay. The new formula is tested on the case of a strong coupling superconductor Pb0.9_{0.9}Bi0.1_{0.1} and an excellent agreement with theoretical predictions is obtained. While both the Dynes formula and the one proposed in this work give good fits and fit parameters for Pb0.9_{0.9}Bi0.1_{0.1}, only the latter formula can be justified microscopically.Comment: 6 pages, 4 figure

    Retention of Two-Band Superconductivity in Highly Carbon-Doped MgB2

    Full text link
    Tunneling data on MgB_{1.8}C_{0.2} show a reduction in the energy gap of the pi-bands by a factor of two from undoped MgB2 that is consistent with the Tc reduction, but inconsistent with the expectations of the dirty limit. Dirty-limit theory for undoped MgB2 predicts a single gap about three times larger than measured and a reduced Tc comparable to that measured. Our heavily-doped samples exhibit a uniform dispersion of C suggestive of significantly enhanced scattering, and we conclude that the retention of two-band superconductivity in these samples is caused by a selective suppression of interband scattering.Comment: 4 pages, 4 figures; added one figure, added one reference, minor changes to the text, manuscript accepted for publication as a Phys. Rev. B Rapid Communicatio

    Persistence of Strong Electron Coupling to a Narrow Boson Spectrum in Overdoped BiSrCaCuO (Bi2212) Tunneling Data

    Get PDF
    A d-wave, Eliashberg analysis of break junction and STM tunneling spectra on BiSrCaCuO (Bi2212) reveals that a spectral dip feature is directly linked to strong electronic coupling to a narrow boson spectrum, evidenced by a large peak in the boson spectral weight. The tunneling dip feature remains robust in the overdoped regime of Bi2212 with bulk Tc values of 56 K-62 K. This is contrary to recent optical conductivity measurements of the self-energy that suggest the narrow boson spectrum disappears in overdoped Bi2212 and therefore cannot be essential for the pairing mechanism. The discrepancy is resolved by considering the way each technique probes the electron self-energy, in particular, the unique sensitivity of tunneling to the off-diagonal or pairing part of the self-energy.Comment: RevTex4. 5 pages. 3 figures. Submitted to Physical Review Letter

    Predominantly Superconducting Origin of Large Energy Gaps in Underdoped Bi2Sr2CaCu2O8-d from Tunneling Spectroscopy

    Get PDF
    New tunneling data are reported in underdoped Bi2Sr2CaCu2O8-d using superconductor-insulator-superconductor break junctions. Energy gaps, Delta, of 51+2, 54+2 and 57+3 meV are observed for three crystals with Tc=77, 74, and 70 K respectively. These energy gaps are nearly three times larger than for overdoped crystals with similar Tc. Detailed examination of tunneling spectra over a wide doping range from underdoped to overdoped, including the Josephson IcRn product, indicate that these energy gaps are predominantly of superconducting origin.Comment: 10 pages, 4 figures, 1 tabl

    Scanning Tunneling Spectroscopy in MgB2

    Full text link
    We present scanning tunneling microscopy measurements of the surface of superconducting MgB2 with a critical temperature of 39K. In zero magnetic field the conductance spectra can be analyzed in terms of the standard BCS theory with a smearing parameter Gamma. The value of the superconducting gap is 5.2 meV at 4.2 K, with no experimentally significant variation across the surface of the sample. The temperature dependence of the gap follows the BCS form, fully consistent with phonon-mediated superconductivity in this novel superconductor. The application of a magnetic field induces strong pair-breaking as seen in the conductance spectra in fields up to 6 T.Comment: 4 pages, 4 figure
    • …
    corecore