1,386 research outputs found

    Staggered Pairing Phenomenology for UPd_2Al_3 and UNi_2Al_3

    Full text link
    We apply the staggered-pairing Ginzburg-Landau phenomenology to describe superconductivity in UPd_2Al_3 and UNi_2Al_3. The phenomenology was applied successfully to UPt_3 so it explains why these materials have qualitatively different superconducting phase diagrams although they have the same point-group symmetry. UPd_2Al_3 and UNi_2Al_3 have a two-component superconducting order parameter transforming as an H-point irreducible representation of the space group. Staggered superconductivity can induce charge-density waves characterized by new Bragg peaks suggesting experimental tests of the phenomenology.Comment: 4 pages, REVTeX, 2 Postscript figure

    Phonon dispersion and electron-phonon coupling in MgB_2 and AlB_2

    Full text link
    We present a first principles investigation of the lattice dynamics and electron-phonon coupling of the superconductor MgB_2 and the isostructural AlB_2 within the framework of density functional perturbation theory using a mixed-basis pseudopotential method. Complete phonon dispersion curves and Eliashberg functions \alpha^2F are calculated for both systems. We also report on Raman measurements, which support the theoretical findings. The calculated generalized density-of-states for MgB_2 is in excellent agreement with recent neutron-scattering experiments. The main differences in the calculated phonon spectra and \alpha^2F are related to high frequency in-plane boron vibrations. As compared to AlB_2, they are strongly softened in MgB_2 and exhibit an exceptionally strong coupling to electronic states at the Fermi energy. The total coupling constants are \lambda_{MgB_2}=0.73 and \lambda_{AlB_2}=0.43. Implications for the superconducting transition temperature are briefly discussed.Comment: 10 pages, 4 figures, to appear in Phys. Rev. Let

    Incommensurate phonon anomaly and the nature of charge density waves in cuprates

    Get PDF
    While charge density wave (CDW) instabilities are ubiquitous to superconducting cuprates, the different ordering wavevectors in various cuprate families have hampered a unified description of the CDW formation mechanism. Here we investigate the temperature dependence of the low energy phonons in the canonical CDW ordered cuprate La1.875_{1.875}Ba0.125_{0.125}CuO4_{4}. We discover that the phonon softening wavevector associated with CDW correlations becomes temperature dependent in the high-temperature precursor phase and changes from a wavevector of 0.238 reciprocal space units (r.l.u.) below the ordering transition temperature up to 0.3~r.l.u. at 300~K. This high-temperature behavior shows that "214"-type cuprates can host CDW correlations at a similar wavevector to previously reported CDW correlations in non-"214"-type cuprates such as YBa2_{2}Cu3_{3}O6+δ_{6+\delta}. This indicates that cuprate CDWs may arise from the same underlying instability despite their apparently different low temperature ordering wavevectors.Comment: Accepted in Phys. Rev. X; 9 pages; 5 figures; 3 pages of supplementary materia

    Strange semimetal dynamics in SrIrO3

    Get PDF
    The interplay of electronic correlations, multi-orbital excitations, and spin-orbit coupling is afertile ground for new states of matter in quantum materials. Here, we report on a polarizedRaman scattering study of semimetallic SrIrO3. The momentum-space selectivity of Ramanscattering allows to circumvent the challenge to resolve the dynamics of charges with verydifferent mobilities. The Raman responses of both holes and electrons display an electroniccontinuum extending far beyond the energies allowed in a regular Fermi liquid. Analyzing thisresponse within a memory function formalism, we extract their frequency dependent scat-tering rate and mass enhancement, from which we determine their DC-mobilities andelectrical resistivities that agree well with transport measurement. We demonstrate that itscharge dynamics is well described by a marginal Fermi liquid phenomenology, with a scat-tering rate close to the Planckian limit. This demonstrates the potential of this approach toinvestigate the charge dynamics in multi-band systems
    corecore