304 research outputs found

    Analytic Trajectories for Mobility Edges in the Anderson Model

    Full text link
    A basis of Bloch waves, distorted locally by the random potential, is introduced for electrons in the Anderson model. Matrix elements of the Hamiltonian between these distorted waves are averages over infinite numbers of independent site-energies, and so take definite values rather than distributions of values. The transformed Hamiltonian is ordered, and may be interpreted as an itinerant electron interacting with a spin on each site. In this new basis, the distinction between extended and localized states is clear, and edges of the bands of extended states, the mobility edges, are calculated as a function of disorder. In two dimensions these edges have been found in both analytic and numerical applications of tridiagonalization, but they have not been found in analytic approaches based on perturbation theory, or the single-parameter scaling hypothesis; nor have they been detected in numerical approaches based on scaling or critical distributions of level spacing. In both two and three dimensions the mobility edges in this work are found to separate with increasing disorder for all disorders, in contrast with the results of calculation using numerical scaling for three dimensions. The analytic trajectories are compared with recent results of numerical tridiagonalization on samples of over 10^9 sites. This representation of the Anderson model as an ordered interacting system implies that in addition to transitions at mobility edges, the Anderson model contains weaker transitions characterized by critical disorders where the band of extended states decouples from individual sites; and that singularities in the distribution of site energies, rather than its second moment, determine localization properties of the Anderson model.Comment: 32 pages, 2 figure

    An augmented space recursion study of the electronic structure of rough epitaxial overlayers

    Full text link
    In this communication we propose the use of the Augmented Space Recursion as an ideal methodology for the study of electronic and magnetic structures of rough surfaces, interfaces and overlayers. The method can take into account roughness, short-ranged clustering effects, surface dilatation and interdiffusion. We illustrate our method by an application of Fe overlayer on Ag (100) surface.Comment: 22 pages, Latex, 6 postscript figure

    Exact particle and kinetic energy densities for one-dimensional confined gases of non-interacting fermions

    Full text link
    We propose a new method for the evaluation of the particle density and kinetic pressure profiles in inhomogeneous one-dimensional systems of non-interacting fermions, and apply it to harmonically confined systems of up to N=1000 fermions. The method invokes a Green's function operator in coordinate space, which is handled by techniques originally developed for the calculation of the density of single-particle states from Green's functions in the energy domain. In contrast to the Thomas-Fermi (local density) approximation, the exact profiles under harmonic confinement show negative local pressure in the tails and a prominent shell structure which may become accessible to observation in magnetically trapped gases of fermionic alkali atoms.Comment: 8 pages, 3 figures, accepted for publication in Phys. Rev. Let

    Krylov Subspace Method for Molecular Dynamics Simulation based on Large-Scale Electronic Structure Theory

    Full text link
    For large scale electronic structure calculation, the Krylov subspace method is introduced to calculate the one-body density matrix instead of the eigenstates of given Hamiltonian. This method provides an efficient way to extract the essential character of the Hamiltonian within a limited number of basis set. Its validation is confirmed by the convergence property of the density matrix within the subspace. The following quantities are calculated; energy, force, density of states, and energy spectrum. Molecular dynamics simulation of Si(001) surface reconstruction is examined as an example, and the results reproduce the mechanism of asymmetric surface dimer.Comment: 7 pages, 3 figures; corrected typos; to be published in Journal of the Phys. Soc. of Japa

    Efficient Recursion Method for Inverting Overlap Matrix

    Full text link
    A new O(N) algorithm based on a recursion method, in which the computational effort is proportional to the number of atoms N, is presented for calculating the inverse of an overlap matrix which is needed in electronic structure calculations with the the non-orthogonal localized basis set. This efficient inverting method can be incorporated in several O(N) methods for diagonalization of a generalized secular equation. By studying convergence properties of the 1-norm of an error matrix for diamond and fcc Al, this method is compared to three other O(N) methods (the divide method, Taylor expansion method, and Hotelling's method) with regard to computational accuracy and efficiency within the density functional theory. The test calculations show that the new method is about one-hundred times faster than the divide method in computational time to achieve the same convergence for both diamond and fcc Al, while the Taylor expansion method and Hotelling's method suffer from numerical instabilities in most cases.Comment: 17 pages and 4 figure

    Site dilution of quantum spins in the honeycomb lattice

    Get PDF
    We discuss the effect of site dilution on both the magnetization and the density of states of quantum spins in the honeycomb lattice, described by the antiferromagnetic Heisenberg spin-S model. For this purpose a real-space Bogoliubov-Valatin transformation is used. In this work we show that for the S>1/2 the system can be analyzed in terms of linear spin wave theory. For spin S=1/2, however, the linear spin wave approximation breaks down. In this case, we have studied the effect of dilution on the staggered magnetization using the Stochastic Series Expansion Monte Carlo method. Two main results are to be stressed from the Monte Carlo method: (i) a better value for the staggered magnetization of the undiluted system, m=0.2677(6); (ii) a finite value of the staggered magnetization of the percolating cluster at the classical percolation threshold, showing that there is no quantum critical transition driven by dilution in the Heisenberg model. In the solution of the problem using linear the spin wave method we pay special attention to the presence of zero energy modes. Using a combination of linear spin wave analysis and the recursion method we were able to obtain the thermodynamic limit behavior of the density of states for both the square and the honeycomb lattices. We have used both the staggered magnetization and the density of states to analyze neutron scattering experiments and Neel temperature measurements on quasi-two- -dimensional honeycomb systems. Our results are in quantitative agreement with experimental results on Mn_pZn_{1-p}PS_3 and on the Ba(Ni_pMg_{1-p})_2V_2O_8.Comment: 21 pages (REVTEX), 16 figure

    Microscopic self-consistent theory of Josephson junctions including dynamical electron correlations

    Full text link
    We formulate a fully self-consistent, microscopic model to study the retardation and correlation effects of the barrier within a Josephson junction. The junction is described by a series of planes, with electronic correlation included through a local self energy for each plane. We calculate current-phase relationships for various junctions, which include non-magnetic impurities in the barrier region, or an interfacial scattering potential. Our results indicate that the linear response of the supercurrent to phase across the barrier region is a good, but not exact indicator of the critical current. Our calculations of the local density of states show the current-carrying Andreev bound states and their energy evolution with the phase difference across the junction. We calculate the figure of merit for a Josephson junction, which is the product of the critical current, Ic, and the normal state resistance, R(N), for junctions with different barrier materials. The normal state resistance is calculated using the Kubo formula, for a system with zero current flow and no superconducting order. Semiclassical calculations would predict that these two quantities are determined by the transmission probabilities of electrons in such a way that the product is constant for a given superconductor at fixed temperature. Our self-consistent solutions for different types of barrier indicate that this is not the case. We suggest some forms of barrier which could increase the Ic.R(N) product, and hence improve the frequency response of a Josephson device.Comment: 46 pages, 21 figure

    Two--magnon scattering and the spin--phonon interaction beyond the adiabatic approximation

    Full text link
    We consider a model of Raman scattering for a two--dimensional S=1/2S=1/2 Heisenberg Anti-Ferromagnet which includes a {\it dynamical} spin--phonon interaction. We observe a broadening of the line shape due to increased coupling with excited high--energy spin states. Our results are close to a model of random static exchange interactions, first introduced in this context by Haas {\it et al.} [J. Appl. Phys. {\bf 75}, 6340, (1994)], which, when extended to large numbers of spins, explains experiments in the parent insulating compounds of high-TcT_c superconductors.Comment: 14 pages (revtex format), 8 postscript figure

    Double Exchange Model for Magnetic Hexaborides

    Full text link
    A microscopic theory for rare-earth ferromagnetic hexaborides, such as Eu(1-x)Ca(x)B6, is proposed on the basis of the double-exchange Hamiltonian. In these systems, the reduced carrier concentrations place the Fermi level near the mobility edge, introduced in the spectral density by the disordered spin background. We show that the transport properties such as Hall effect, magnetoresitance, frequency dependent conductivity, and DC resistivity can be quantitatively described within the model. We also make specific predictions for the behavior of the Curie temperature, Tc, as a function of the plasma frequency, omega_p.Comment: 4 pages, 3 figure

    X-ray Absorption Near-Edge Structure calculations with pseudopotentials. Application to K-edge in diamond and alpha-quartz

    Full text link
    We present a reciprocal-space pseudopotential scheme for calculating X-ray absorption near-edge structure (XANES) spectra. The scheme incorporates a recursive method to compute absorption cross section as a continued fraction. The continued fraction formulation of absorption is advantageous in that it permits the treatment of core-hole interaction through large supercells (hundreds of atoms). The method is compared with recently developed Bethe-Salpeter approach. The method is applied to the carbon K-edge in diamond and to the silicon and oxygen K-edges in alpha-quartz for which polarized XANES spectra were measured. Core-hole effects are investigated by varying the size of the supercell, thus leading to information similar to that obtained from cluster size analysis usually performed within multiple scattering calculations.Comment: 11 pages, 4 figure
    corecore