53 research outputs found

    Dynamic Behaviour of a Flexible Yacht Sail Plan

    Get PDF
    ‱ Dynamic fluid structure interaction of a sail plan is modeled in harmonic pitching ‱ Aerodynamic forces oscillations show hysteresis phenomena ‱ Neglecting the structural deformation underestimates the forces oscillations ‱ Both aerodynamic and structure inertia affect loads in the rig.A numerical investigation of the dynamic Fluid Structure Interaction (FSI) of a yacht sail plan submitted to harmonic pitching is presented to address both issues of aerodynamic unsteadiness and structural deformation. The FSI model | Vortex Lattice Method uid model and Finite Element structure model | has been validated with full-scale measurements. It is shown that the dynamic behaviour of a sail plan subject to yacht motion clearly deviates from the quasi-steady theory. The aerodynamic forces presented as a function of the instantaneous apparent wind angle show hysteresis loops, suggesting that some energy is exchanged by the system. The area included in the hysteresis loop increases with the motion reduced frequency and amplitude. Comparison of rigid versus soft structures shows that FSI increases the energy exchanged by the system and that the oscillations of aerodynamic forces are underestimated when the structure deformation is not considered. Dynamic loads in the fore and aft rigging wires are dominated by structural and inertial effects. This FSI model and the obtained results may be useful firstly for yacht design, and also in the field of auxiliary wind assisted ship propulsion, or to investigate other marine soft structures.This work was supported by the French Naval Academy

    A coupled electromagnetic / hydrodynamic model for the design of an integrated rim - driven naval propulsion system

    Get PDF
    This paper presents an analytical multi-physic modeling tool for the design optimization of a new kind of naval propulsion system. This innovative technology consists in an electrical permanent magnet motor that is integrated into a duct and surrounds a propeller. Compared with more conventional systems such as pods, the electrical machine and the propeller have the same diameter. Thus, their geometries, in addition to speed and torque, are closely related and a multidisciplinary design approach is relevant. Two disciplines are considered in this analytical model: electromagnetism and hydrodynamics. An example of systematic design for a typical application (a rim-driven thruster for a patrol boat) is then presented for a set of different design objectives (efficiency, mass, etc). The effects of each model are commente

    Experimental validation of unsteady models for wind / sails / rigging fluid structure interaction

    Get PDF
    International audienceThe aim of this paper is to present the work of experimental validation elements of the aero elastic and unsteady model ARAVANTI. Numerical and Experimental results comparison is made on the rigging and sails of a J80 sail boat. Yacht modelling demands to consider unsteady phenomena resulting from the sea state, variations of wind speed and direction, yacht motion or trimming by the crew. A dedicated instrumentation is developed to measure the loads in shrouds and tension points of the sail, the apparent wind, the yacht motion, the sails flying shape and the navigation data. A special effort is made on sensors calibration, physical measurement comprehension and data synchronisation. Comparison with numerical results shows that the loads and flying shapes are well predicted by the model

    Experimental validation of unsteady models for wind / sails / rigging fluid structure interaction

    Get PDF
    The aim of this paper is to present the work of experimental validation elements of the aero elastic and unsteady model ARAVANTI. Numerical and Experimental results comparison is made on the rigging and sails of a J80 sail boat. Yacht modelling demands to consider unsteady phenomena resulting from the sea state, variations of wind speed and direction, yacht motion or trimming by the crew. A dedicated instrumentation is developed to measure the loads in shrouds and tension points of the sail, the apparent wind, the yacht motion, the sails flying shape and the navigation data. A special effort is made on sensors calibration, physical measurement comprehension and data synchronisation. Comparison with numerical results shows that the loads and flying shapes are well predicted by the model

    A Simulation Model for the Evaluation of the Electrical Power Potential Harnessed by a Marine Current Turbine in the Raz de Sein

    No full text
    This work is supported by Brest Métropole Océane (BMO) and the European Social Fund (ESF). It is done within the framework of the Marine Renewable Energy Commission of the Brittany Maritime Cluster (PÎle Mer Bretagne).International audienceThis paper deals with the development of a Matlab-Simulink model of a marine current turbine system through the modeling of the resource and the rotor. The purposes of the simulation model are two: performances and dynamic loads evaluation in different operating conditions and control system development for turbine operation based on pitch and speed control. In this case, it is necessary to find a compromise between the simulation model accuracy and the control loop computational speed. The Blade Element Momentum (BEM) approach is then used for the turbine modeling. As the developed simulation model is intended to be used as a sizing and site evaluation tool for current turbine installations, it has been applied to evaluate the extractable power from the Raz de Sein (Brittany, France). Indeed, tidal current data from the Raz de Sein are used to run the simulation model over various flow regimes and yield the power capture with time

    URANSE simulation of an active variable-pitch cross-flow Darrieus tidal turbine: Sinusoidal pitch function investigation

    Get PDF
    This article describes a 2D CFD simulation implementation of a crossflow tidal turbine, the blades of which have their pitch modified during revolution. Unsteady flow around the turbine is computed with an URANSE method, using the solver ANSYS-CFX. Spatial and temporal discretizations have been studied. The pitch motion of the blades is obtained through mesh deformation, and the main rotation is implemented through sliding boundaries, with general grid interface model. The turbulence model used is kx SST. Langtry Menter transition model was tried but showed high discrepancies with experimental results. Five experimental cases were used to assess the accuracy of the simulation. It provided accurate computed forces for a wide range of tip speed ratios, and proved to be suitable for exploratory simulations. Harmonic pitch control was thus implemented for a tip speed ratio of 5, close to an operational value for a crossflow turbine. First, second and third harmonics pitch function were tested. It was shown that an improvement of more than 50% could be achieved with the second harmonics, with a large reduction in thrust. The flow inside the turbine and close to the blade was examined so that the case of performance improvement due to pitch control could be clearly understood. It was observed that turbine efficiency improvement requires a very slight recirculation and an angle of attack decrease on the upstream part of the turbine, and an angle of attack increase on the downstream part. The flow deceleration through the turbine was found to be a primary factor in pitch function as well. Moreover the hydrodynamic torque and thus the energy required to control the pitch were found to be insignificant

    Fluid Structure Interaction of Yacht Sails in the Unsteady Regime

    Get PDF
    The dynamic Fluid Structure Interaction (FSI) of yacht sails submitted to a harmonic pitching motion is numerically investigated to address both issues of aerodynamic unsteadiness and structural deformation. The model consists in an implicit dynamic coupling algorithm between a Vortex Lattice Method model for the aerodynamics and a Finite Element Method model for the structure dynamics. It is shown that the dynamic behaviour of a sail plan subject to yacht motion clearly deviates from the quasi-steady theory. The aerodynamic forces oscillate with phase shifts with respect to the motion. This results in hysteresis phenomena, which show aerodynamic equivalent damping and stiffening effects of the unsteady behaviour. The area of the hysteresis loop corresponds to the amount of energy exchanged by the system and increases with the motion reduced frequency and amplitude. In the case of a rigid structure, the aerodynamic forces oscillations and the exchanged energy are lower than for a flexible structure

    Sail trimming FSI simulation - Comparison of viscous and inviscid flow models to optimise upwind sails trim

    Get PDF
    A numerical comparison between two FSI models, based on inviscid and viscous flow solvers, is presented in this paper. The differences between aerodynamic coefficients, sail flying shape and pressures computed by both FSI tools are investigated for medium wind conditions. These differences are evaluated for different values of the main sheet length. The study has shown very close results when the main sheet is not over trimmed for medium true wind speed, but discrepancies increase when flow separation becomes significant. Then, an optimisation procedure based on inviscid FSI is performed to optimise the main sheet and car trims, in order to maximise an objective function based on the driving and side forces, in a case of low true wind speed. Limitations of the inviscid flow hypothesis are highlighted and the difficulties to use inviscid FSI models in an optimisation procedure, for a case of low true wind speed, are shown

    Experimental validation of unsteady models for wind / sails / rigging fluid structure interaction

    Get PDF
    The aim of this paper is to present the work of experimental validation elements of the aero elastic and unsteady model ARAVANTI. Numerical and Experimental results comparison is made on the rigging and sails of a J80 sail boat. Yacht modelling demands to consider unsteady phenomena resulting from the sea state, variations of wind speed and direction, yacht motion or trimming by the crew. A dedicated instrumentation is developed to measure the loads in shrouds and tension points of the sail, the apparent wind, the yacht motion, the sails flying shape and the navigation data. A special effort is made on sensors calibration, physical measurement comprehension and data synchronisation. Comparison with numerical results shows that the loads and flying shapes are well predicted by the model

    How to be the best at sail pumping?

    Get PDF
    Pumping or flicking1 is often used by sailors to get extra propulsion while sailing (subject to restrictions by the racing rules2). Common unsteady sailing situations, due to crew action (e.g. manoeuver like gybing3) or environment conditions (e.g. pitching in waves4, 5) can be reproduced in tunnel testing with accurate flow and yacht attitude4 control. Repeated pumping generating unsteady effects on aerodynamic forces6 is investigated here with a dynamic trimming system. Results are presented for different apparent wind angles (AWA) to determine the best pumping conditions and better understand the physical mechanisms involved
    • 

    corecore