1,238 research outputs found

    Magnetic ordering and transport properties of PrBa2Cu4O8

    Get PDF
    [[abstract]]We present studies of the thermal, magnetic, and electrical transport properties of polycrystalline PrBa2Cu4O8 prepared at ambient oxygen pressure. Measurements of the low temperature specific heat C(T) and magnetic susceptibility X(T) show similar results as in PrBa2Cu4O8 an anomaly observed at 17 K in C(T) and dχ/dT may be due to the antiferromagnetic ordering of the Pr sublattice. The upper limit of the entropy associated with the magnetic ordering is estimated to be 6.6 J/mol K. The free magnetic moment from a simple Curie-Weiss fit is 3.11 μg. These similarities in magnetic properties of PrBa2Cu3O7 and PrBa2Cu4O8 suggest that the magnetic coupling mechanism might be mainly associated with the CuO2, planes. The resistivity p(T) is nearly metallic from 1.5 to 300 K. Comparisons of samples prepared by different methods suggest that the anomaly in resistivity around 200 K may be extrinsic. The behavior of p(T) is rather puzzling and cannot be explained simply by a dimensional crossover of charge transport arising from the double CuO2 chains. Other similarities and differences of the mentioned physical properties between PrBa2Cu4O8 and PrBa2Cu4O8 are stressed as well[[fileno]]2010102010072[[department]]物理

    Techniques for flexible radio-over-fibre networks

    Get PDF
    Radio-over-fibre systems can efficiently deliver broadband wireless services in access and in-building networks. RoF signal transport and routing techniques are presented which are robust against fibre dispersion and provide capacity-on-demand for high-capacity multi-tone radio signals

    Magnetic field and pressure effects on charge density wave, superconducting, and magnetic states in Lu5_5Ir4_4Si10_{10} and Er5_5Ir4_4Si10_{10}

    Full text link
    We have studied the charge-density-wave (CDW) state for the superconducting Lu5_5Ir4_4Si10_{10} and the antiferromagnetic Er5_5Ir4_4Si10_{10} as variables of temperature, magnetic field, and hydrostatic pressure. For Lu5_5Ir4_4Si10_{10}, the application of pressure strongly suppresses the CDW phase but weakly enhances the superconducting phase. For Er5_5Ir4_4Si10_{10}, the incommensurate CDW state is pressure independent and the commensurate CDW state strongly depends on the pressure, whereas the antiferromagnetic ordering is slightly depressed by applying pressure. In addition, Er5_5Ir4_4Si10_{10} shows negative magnetoresistance at low temperatures, compared with the positive magnetoresistance of Lu5_5Ir4_4Si10_{10}.Comment: 12 pages, including 6 figure

    Specific heat and thermal conductivity in the vortex state of the two-gap superconductor MgB_2

    Full text link
    The specific heat coefficient gamma_s(H) and the electronic thermal conductivity kappa_{es}(H) are calculated for Abrikosov's vortex lattice by taking into account the effects of supercurrent flow and Andreev scattering. First we solve the gap equation for the entire range of magnetic fields. We take into account vertex corrections due to impurity scattering calculated in the Born approximation. The function gamma_s(H)/gamma_n increases from zero and becomes approximately linear above H/H_{c2} \sim 0.1. The dependence on impurity scattering is substantially reduced by the vertex corrections. The upward curvature of kappa_{es}(H)/kappa_{en}, which is caused by decreasing Andreev scattering for increasing field, is reduced for increasing impurity scattering. We also calculate the temperature dependence of the scattering rates 1/tau_{ps}(H) of a phonon and 1/tau_{es}(H) of a quasiparticle due to quasiparticle and phonon scattering, respectively. At low temperatures the ratio tau_{pn}/tau_{ps}(H) increases rapidly to one as H tends to H_{c2} which yields a rapid drop in the phononic thermal conductivity kappa_{ph}. Our results are in qualitative agreement with the experiments on the two-gap superconductor MgB_2.Comment: 12 pages, 5 figures, additions to figures 1, 2, and 3. Accepted by Phys. Rev.

    First-Principles Calculation of the Superconducting Transition in MgB2 within the Anisotropic Eliashberg Formalism

    Full text link
    We present a study of the superconducting transition in MgB2 using the ab-initio pseudopotential density functional method and the fully anisotropic Eliashberg equation. Our study shows that the anisotropic Eliashberg equation, constructed with ab-initio calculated momentum-dependent electron-phonon interaction and anharmonic phonon frequencies, yields an average electron-phonon coupling constant lambda = 0.61, a transition temperature Tc = 39 K, and a boron isotope-effect exponent alphaB = 0.31 with a reasonable assumption of mu* = 0.12. The calculated values for Tc, lambda, and alphaB are in excellent agreement with transport, specific heat, and isotope effect measurements respectively. The individual values of the electron-phonon coupling lambda(k,k') on the various pieces of the Fermi surface however vary from 0.1 to 2.5. The observed Tc is a result of both the raising effect of anisotropy in the electron-phonon couplings and the lowering effect of anharmonicity in the relevant phonon modes.Comment: 4 pages, 3 figures, 1 tabl

    Informedia at TRECVID 2003: Analyzing and searching broadcast news video

    Get PDF
    We submitted a number of semantic classifiers, most of which were merely trained on keyframes. We also experimented with runs of classifiers were trained exclusively on text data and relative time within the video, while a few were trained using all available multiple modalities. 1.2 Interactive search This year, we submitted two runs using different versions of the Informedia systems. In one run, a version identical to last year's interactive system was used by five researchers, who split up the topics between themselves. The system interface emphasizes text queries, allowing search across ASR, closed captions and OCR text. The result set can then be manipulated through: • storyboards of images spanning across video story segments • emphasizing matching shots to a user’s query to reduce the image count to a manageable size • resolution and layout under user control • additional filtering provided through shot classifiers such as outdoors, and shots with people, etc. • display of filter count and distribution to guide their use in manipulating storyboard views. In the best-performing interactive run, for all topics a single researcher used an improved version of the system, which allowed more effective browsing and visualization of the results of text queries using

    Role of fractal dimension in random walks on scale-free networks

    Full text link
    Fractal dimension is central to understanding dynamical processes occurring on networks; however, the relation between fractal dimension and random walks on fractal scale-free networks has been rarely addressed, despite the fact that such networks are ubiquitous in real-life world. In this paper, we study the trapping problem on two families of networks. The first is deterministic, often called (x,y)(x,y)-flowers; the other is random, which is a combination of (1,3)(1,3)-flower and (2,4)(2,4)-flower and thus called hybrid networks. The two network families display rich behavior as observed in various real systems, as well as some unique topological properties not shared by other networks. We derive analytically the average trapping time for random walks on both the (x,y)(x,y)-flowers and the hybrid networks with an immobile trap positioned at an initial node, i.e., a hub node with the highest degree in the networks. Based on these analytical formulae, we show how the average trapping time scales with the network size. Comparing the obtained results, we further uncover that fractal dimension plays a decisive role in the behavior of average trapping time on fractal scale-free networks, i.e., the average trapping time decreases with an increasing fractal dimension.Comment: Definitive version published in European Physical Journal

    Semileptonic and nonleptonic B decays to three charm quarks: B->J/psi (eta_c) D l nu and J/psi (eta_c) D pi

    Full text link
    We evaluate the form factors describing the semileptonic decays B0ˉJ/ψ(ηc)D+νˉ\bar{B^0}\to J/\psi (\eta_c) D^+ \ell^- \bar \nu_\ell, within the framework of a QCD relativistic potential model. This decay is complementary to B0ˉJ/ψ(ηc)D+π\bar{B^0}\to J/\psi (\eta_c) D^+ \pi^- in a phase space region where a pion factors out.We estimate the branching ratio for these semileptonic and nonleptonic channels, finding BR(B0ˉJ/ψ(ηc)D+ν)1013\mathcal{BR}(\bar{B^0} \to J/\psi (\eta_c) D^+ \ell \nu_\ell) \simeq 10^{-13}, BR(B0ˉJ/ψD+π)=3.1×108\mathcal{BR}(\bar{B^0} \to J/\psi D^+ \pi^-) = 3.1 \times 10^{-8} and BR(B0ˉηcD+π)=3.5×108\mathcal{BR}(\bar{B^0} \to \eta_c D^+ \pi^-) = 3.5 \times 10^{-8}.Comment: 14 pages, 4 figure

    Analysis of the intraspinal calcium dynamics and its implications on the plasticity of spiking neurons

    Full text link
    The influx of calcium ions into the dendritic spines through the N-metyl-D-aspartate (NMDA) channels is believed to be the primary trigger for various forms of synaptic plasticity. In this paper, the authors calculate analytically the mean values of the calcium transients elicited by a spiking neuron undergoing a simple model of ionic currents and back-propagating action potentials. The relative variability of these transients, due to the stochastic nature of synaptic transmission, is further considered using a simple Markov model of NMDA receptos. One finds that both the mean value and the variability depend on the timing between pre- and postsynaptic action-potentials. These results could have implications on the expected form of synaptic-plasticity curve and can form a basis for a unified theory of spike time-dependent, and rate based plasticity.Comment: 14 pages, 10 figures. A few changes in section IV and addition of a new figur

    A double pendulum precision thrust measurement balance

    Get PDF
    corecore