153 research outputs found

    Bose-stimulated scattering off a cold atom trap

    Get PDF
    The angle and temperature dependence of the photon scattering rate for Bose-stimulated atom recoil transitions between occupied states is compared to diffraction and incoherent Rayleigh scattering near the Bose-Einstein transition for an optically thin trap in the limit of large particle number, N. Each of these processes has a range of angles and temperatures for which it dominates over the others by a divergent factor as N->oo.Comment: 18 pages (REVTeX), no figure

    ρ\rho Polarization and `Model Independent' Extraction of Vub/Vcd|V_{ub}|/|V_{cd}| from DρνD\to\rho\ell\nu and BρνB\to\rho\ell\nu

    Full text link
    We briefly discuss the predictions of the heavy quark effective theory for the semileptonic decays of a heavy pseudoscalar to a light one, or to a light vector meson. We point out that measurement of combinations of differential helicity decay rates at Cleo-c and the BB factories can provide a model independent means of extracting the ratio Vub/Vcd|V_{ub}|/|V_{cd}|. We briefly discuss the corrections to this prediction.Comment: 8 pages, LaTeX, 1 figur

    Condensate fluctuations of a trapped, ideal Bose gas

    Get PDF
    For a non-self-interacting Bose gas with a fixed, large number of particles confined to a trap, as the ground state occupation becomes macroscopic, the condensate number fluctuations remain micrscopic. However, this is the only significant aspect in which the grand canonical description differs from canonical or microcanonical in the thermodynamic limit. General arguments and estimates including some vanishingly small quantities are compared to explicit, fixed-number calculations for 10^2 to 10^6 particles.Comment: 16 pages (REVTeX) plus 4 figures (ps), revision includes brief comparison of repulsive-interaction vs. fixed-N fluctuation damping. To be published in Phys. Rev.

    Unitarity of Quantum Theory and Closed Time-Like Curves

    Get PDF
    Interacting quantum fields on spacetimes containing regions of closed timelike curves (CTCs) are subject to a non-unitary evolution XX. Recently, a prescription has been proposed, which restores unitarity of the evolution by modifying the inner product on the final Hilbert space. We give a rigorous description of this proposal and note an operational problem which arises when one considers the composition of two or more non-unitary evolutions. We propose an alternative method by which unitarity of the evolution may be regained, by extending XX to a unitary evolution on a larger (possibly indefinite) inner product space. The proposal removes the ambiguity noted by Jacobson in assigning expectation values to observables localised in regions spacelike separated from the CTC region. We comment on the physical significance of the possible indefiniteness of the inner product introduced in our proposal.Comment: 13 pages, LaTeX. Final revised paper to be published in Phys Rev D. Some changes are made to expand our discussion of Anderson's Proposal for restoring unitarit

    Space-time properties of the higher twist amplitudes

    Get PDF
    A consistent and intuitive description of the twist-4 corrections to the hadron structure functions is presented in a QCD-improved parton model using time-ordered perturbative theory, where the collinear singularities are naturally eliminated. We identify the special propagators with the backward propagators of partons in time order.Comment: 18 Pages, Latex, 8 Ps figures, To appear in Phys. Rev.

    Selection rules in three-body B decay from factorization

    Get PDF
    Extending the dynamics underlying the factorization calculation of two-body decays, we propose simple selection rules for nonresonant three-body B decays. We predict, for instance, that in the Dalitz plot of B^0-->D^0-bar\pi^+\pi^-, practically no events should be found in the corner of E(\pi^+) < \Lambda_{QCD} as compared with the corner of E(\pi^-) < \Lambda_{QCD}. We also predict that there should be very few three-body decay events with a soft meson resonance and two energetic mesons or meson resonances. The selection rules are quite different from the soft pion theorem, since they apply to different kinematical regions. For B^0 -->D^0-bar\pi^+\pi^-, the latter predicts that the decay matrix element vanishes in the zero-four-momentum limit of \pi^+ instead of \pi^-. Since this marked difference from the soft pion theorem is directly related to the issue of short-distance QCD dominance in the FSI of two-body B decays, experimental test of the selection rules will shed light on strong interaction dynamics of B decay.Comment: 12 pages in REVTEX including 3 eps figure

    Multiplicative renormalizability and quark propagator

    Get PDF
    The renormalized Dyson-Schwinger equation for the quark propagator is studied, in Landau gauge, in a novel truncation which preserves multiplicative renormalizability. The renormalization constants are formally eliminated from the integral equations, and the running coupling explicitly enters the kernels of the new equations. To construct a truncation which preserves multiplicative renormalizability, and reproduces the correct leading order perturbative behavior, non-trivial cancellations involving the full quark-gluon vertex are assumed in the quark self-energy loop. A model for the running coupling is introduced, with infrared fixed point in agreement with previous Dyson-Schwinger studies of the gauge sector, and with correct logarithmic tail. Dynamical chiral symmetry breaking is investigated, and the generated quark mass is of the order of the extension of the infrared plateau of the coupling, and about three times larger than in the Abelian approximation, which violates multiplicative renormalizability. The generated scale is of the right size for hadronic phenomenology, without requiring an infrared enhancement of the running coupling.Comment: 17 pages; minor corrections, comparison to lattice results added; accepted for publication in Phys. Rev.

    Momentum dependent quark mass in two-point correlators

    Full text link
    A momentum dependent quark mass may be incorporated into a quark model in a manner consistent with dynamically broken chiral symmetry. We use this to study the high Q2Q^2 behavior of the vector, axialvector, scalar and pseudoscalar two-point correlation functions. Expanding the results to order 1/Q61/Q^6, we show the correspondence between the dynamical quark mass and the vacuum condensates which appear in the operator product expansion of QCD. We recover the correct leading logarithmic Q2Q^2 dependence of the various terms in the OPE, but we also find substantial subleading corrections which are numerically huge in a specific case. We conclude by using the vector minus axialvector correlator to estimate the π+π0\pi^+ - \pi^0 electromagnetic mass difference.Comment: 18 pages, LaTeX, figures in accompanying uuencoded postscript file. Published version. References adde

    Two-loop corrections to the Isgur-Wise function in QCD sum rules

    Full text link
    We complete the QCD sum rule analysis of the Isgur Wise form factor ξ(vv)\xi(v\cdot v') at next-to-leading order in renormalization-group improved perturbation theory. To this end, the exact result for the two-loop corrections to the perturbative contribution is derived using the heavy quark effective theory. Several techniques for the evaluation of two-loop integrals involving two different types of heavy quark propagators are discussed in detail, among them the methods of integration by parts and differential equations. The order-αs\alpha_s corrections to the Isgur-Wise function turn out to be small and well under control. At large recoil, they tend to decrease the form factor by 510%5-10\%.Comment: 24 pages (REVTEX), 2 figures available upon request, SLAC-PUB-599

    Asymptotic Freedom for Non-Relativistic Confinement

    Get PDF
    Some aspects of asymptotic freedom are discussed in the context of a simple two-particle non-relativisitic confining potential model. In this model asymptotic freedom follows from the similarity of the free-particle and bound state radial wave functions at small distances and for the same angular momentum and the same large energy. This similarity, which can be understood using simple quantum mechanical arguments, can be used to show that the exact response function approaches that obtained when final state interactions are ignored. A method of calculating corrections to this limit is given and explicit examples are given for the case of the harmonic oscillator.Comment: 16 pages, 5 figures, RevTex
    corecore