20,526 research outputs found
Magnon BEC and various phases of 3D quantum helimagnets under high magnetic field
We study high-field phase diagram and low-energy excitations of
three-dimensional quantum helimagnets. Slightly below the saturation field, the
emergence of magnetic order may be viewed as Bose-Einstein condensation (BEC)
of magnons. The method of dilute Bose gas enables a quantitative analysis of
quantum effects in these helimagnets and thereby three phases are found: cone,
coplanar fan and a phase-separated one. As an application, we map out the phase
diagram of a 3D helimagnet which consists of frustrated J1-J2 chains as a
function of frustration and an interchain coupling. Moreover, we also calculate
the stability of the 2-magnon bound state to investigate the possibility of the
bound-magnon BEC.Comment: 9pages, 6figure
Weakly coupled quantum spin singlets in BaCrO
Using single crystal inelastic neutron scattering with and without
application of an external magnetic field and powder neutron diffraction, we
have characterized magnetic interactions in BaCrO. Even without
field, we found that there exist three singlet-to-triplet excitation modes in
scattering plane. Our complete analysis shows that the three modes
are due to spatially anisotropic interdimer interactions that are induced by
local distortions of the tetrahedron of oxygens surrounding the Jahn-Teller
active Cr. The strong intradimer coupling of meV
and weak interdimer interactions ( meV) makes
BaCrO a good model system for weakly-coupled quantum spin
dimers
Scaling Relation for Excitation Energy Under Hyperbolic Deformation
We introduce a one-parameter deformation for one-dimensional (1D) quantum
lattice models, the hyperbolic deformation, where the scale of the local energy
is proportional to cosh lambda j at the j-th site. Corresponding to a 2D
classical system, the deformation does not strongly modify the ground state. In
this situation, the effective Hamiltonian of the quantum system shows that the
quasi particle is weakly bounded around the center of the system. By analyzing
this binding effect, we derive scaling relations for the mean-square width
of confinement, the energy correction with respect to the excitation gap
\Delta, and the deformation parameter . This finite-size scaling
allows us to investigate excitation gap of 1D non-deformed bulk quantum
systems.Comment: 9 pages, 5 figure
Long-range and selective coupler for superconducting flux qubits
We propose a qubit-qubit coupling scheme for superconducting flux quantum
bits (qubits), where a quantized Josephson junction resonator and microwave
irradiation are utilized. The junction is used as a tunable inductance
controlled by changing the bias current flowing through the junction, and thus
the circuit works as a tunable resonator. This enables us to make any qubits
interact with the resonator. Entanglement between two of many qubits whose
level splittings satisfy some conditions, is formed by microwave irradiation
causing a two-photon Rabi oscillation. Since the size of the resonator can be
as large as sub-millimeters and qubits interact with it via mutual inductance,
our scheme makes it possible to construct a quantum gate involving remote
qubitsComment: 8 pages, 4 figure
Spin-lattice instability to a fractional magnetization state in the spinel HgCr2O4
Magnetic systems are fertile ground for the emergence of exotic states when
the magnetic interactions cannot be satisfied simultaneously due to the
topology of the lattice - a situation known as geometrical frustration.
Spinels, AB2O4, can realize the most highly frustrated network of
corner-sharing tetrahedra. Several novel states have been discovered in
spinels, such as composite spin clusters and novel charge-ordered states. Here
we use neutron and synchrotron X-ray scattering to characterize the fractional
magnetization state of HgCr2O4 under an external magnetic field, H. When the
field is applied in its Neel ground state, a phase transition occurs at H ~ 10
Tesla at which each tetrahedron changes from a canted Neel state to a
fractional spin state with the total spin, Stet, of S/2 and the lattice
undergoes orthorhombic to cubic symmetry change. Our results provide the
microscopic one-to-one correspondence between the spin state and the lattice
distortion
Magnetic field-induced phase transitions in a weakly coupled s = 1/2 quantum spin dimer system BaCrO
By using bulk magnetization, electron spin resonance (ESR), heat capacity,
and neutron scattering techniques, we characterize the thermodynamic and
quantum phase diagrams of BaCrO. Our ESR measurements indicate that
the low field paramagnetic ground state is a mixed state of the singlet and the
S = 0 triplet for . This suggests the presence of an intra-dimer
Dzyaloshinsky-Moriya (DM) interaction with a DM vector perpendicular to the
c-axis
Infrared phonons and specific heat in Ba3Cr2O8
We report on the phonon spectrum of Ba3Cr2O8 determined by infrared
spectroscopy, and on specific heat measurements across the Jahn-Teller
transition in magnetic fields up to 9 T. Phonon modes split below the
Jahn-Teller transition, which occurs at T_{JT} = 70 K as detected by specific
heat measurements. The field-dependent specific heat data is analyzed in terms
of the contributions from lattice, magnetic and orbital degrees of freedom. In
contrast to the isostructural compound Sr3Cr2O8 our analysis does not indicate
the existence of orbital fluctuations below the Jahn-Teller transition in
Ba3Cr2O8.Comment: 5 pages, 4 figure
Hermitian conjugate measurement
We propose a new class of probabilistic reversing operations on the state of
a system that was disturbed by a weak measurement. It can approximately recover
the original state from the disturbed state especially with an additional
information gain using the Hermitian conjugate of the measurement operator. We
illustrate the general scheme by considering a quantum measurement consisting
of spin systems with an experimentally feasible interaction and show that the
reversing operation simultaneously increases both the fidelity to the original
state and the information gain with such a high probability of success that
their average values increase simultaneously.Comment: 26 pages, 4 figures; a paragraph is added in the introductio
Staggered magnetism in LiVO at low temperatures probed by the muon Knight shift
We report on the muon Knight shift measurement in single crystals of LiV2O4.
Contrary to what is anticipated for the heavy-fermion state based on the Kondo
mechanism, the presence of inhomogeneous local magnetic moments is demonstrated
by the broad distribution of the Knight shift at temperatures well below the
presumed "Kondo temperature" ( K). Moreover, a significant
fraction ( %) of the specimen gives rise to a second component which
is virtually non-magnetic. These observations strongly suggest that the
anomalous properties of LiV2O4 originates from frustration of local magnetic
moments.Comment: 11 pages, 5 figures, sbmitted to J. Phys.: Cond. Mat
- …
