560 research outputs found

    A comparison of Vlasov with drift kinetic and gyrokinetic theories

    Full text link
    A kinetic consideration of an axisymmetric equilibrium with vanishing electric field near the magnetic axis shows that del f should not vanish on axis within the framework of Vlasov theory while it can either vanish or not in the framework of both a drift kinetic and a gyrokinetic theories (f is either the pertinent particle or the guiding center distribution function). This different behavior, relating to the reduction of phase space which leads to the loss of a Vlasov constant of motion, may result in the construction of different currents in the reduced phase space than the Vlasov ones. This conclusion is indicative of some limitation on the implications of reduced kinetic theories in particular as concerns the physics of energetic particles in the central region of magnetically confined plasmas.Comment: 9 page

    Lyapunov stability of flowing MHD plasmas surrounded by resistive walls

    Get PDF
    A general stability condition for plasma-vacuum systems with resistive walls is derived by using the Frieman Rotenberg lagrangian stability formulation [Rev. Mod. Phys. 32, 898 (1960)]. It is shown that the Lyapunov stability limit for external modes does not depend upon the gyroscopic term but upon the sign of the perturbed potential energy only. In the absence of dissipation in the plasma such as viscosity, it is expected that the flow cannot stabilize the system.Comment: 9 page

    Tokamak-like Vlasov equilibria

    Full text link
    Vlasov equilibria of axisymmetric plasmas with vacuum toroidal magnetic field can be reduced, up to a selection of ions and electrons distributions functions, to a Grad-Shafranov-like equation. Quasineutrality narrow the choice of the distributions functions. In contrast to two-dimensional translationally symmetric equilibria whose electron distribution function consists of a displaced Maxwellian, the toroidal equilibria need deformed Maxwellians. In order to be able to carry through the calculations, this deformation is produced by means of either a Heaviside step function or an exponential function. The resulting Grad-Shafranov-like equations are established explicitly.Comment: 11 page

    Ideal magnetohydrodynamic equilibria with helical symmetry and incompressible flows

    Full text link
    A recent study on axisymmetric ideal magnetohydrodynamic equilibria with incompressible flows [H. Tasso and G. N. Throumoulopoulos, Phys. Plasmas {\bf 5}, 2378 (1998)] is extended to the generic case of helically symmetric equilibria with incompressible flows. It is shown that the equilibrium states of the system under consideration are governed by an elliptic partial differential equation for the helical magnetic flux function ψ\psi containing five surface quantities along with a relation for the pressure. The above mentioned equation can be transformed to one possessing differential part identical in form to the corresponding static equilibrium equation, which is amenable to several classes of analytic solutions. In particular, equilibria with electric fields perpendicular to the magnetic surfaces and non-constant-Mach-number flows are constructed. Unlike the case in axisymmetric equilibria with isothermal magnetic surfaces, helically symmetric T=T(ψ)T=T(\psi) equilibria are over-determined, i.e., in this case the equilibrium equations reduce to a set of eight ordinary differential equations with seven surface quantities. In addition, it is proved the non-existence of incompressible helically symmetric equilibria with (a) purely helical flows (b) non-parallel flows with isothermal magnetic surfaces and the magnetic field modulus being a surface quantity (omnigenous equilibria).Comment: Latex file, 13 pages, accepted in J. Plasma Phy

    Cylindrical ideal magnetohydrodynamic equilibria with incompressible flows

    Full text link
    It is proved that (a) the solutions of the ideal magnetohydrodynamic equation, which describe the equlibrium states of a cylindrical plasma with purely poloidal flow and arbitrary cross sectional shape [G. N. Throumoulopoulos and G. Pantis, Plasma Phys. and Contr. Fusion 38, 1817 (1996)] are also valid for incompressible equlibrium flows with the axial velocity component being a free surface quantity and (b) for the case of isothermal incompressible equilibria the magnetic surfaces have necessarily circular cross section.Comment: 7 pages, latex, no figure
    • …
    corecore