152 research outputs found

    On all possible static spherically symmetric EYM solitons and black holes

    Get PDF
    We prove local existence and uniqueness of static spherically symmetric solutions of the Einstein-Yang-Mills equations for any action of the rotation group (or SU(2)) by automorphisms of a principal bundle over space-time whose structure group is a compact semisimple Lie group G. These actions are characterized by a vector in the Cartan subalgebra of g and are called regular if the vector lies in the interior of a Weyl chamber. In the irregular cases (the majority for larger gauge groups) the boundary value problem that results for possible asymptotically flat soliton or black hole solutions is more complicated than in the previously discussed regular cases. In particular, there is no longer a gauge choice possible in general so that the Yang-Mills potential can be given by just real-valued functions. We prove the local existence of regular solutions near the singularities of the system at the center, the black hole horizon, and at infinity, establish the parameters that characterize these local solutions, and discuss the set of possible actions and the numerical methods necessary to search for global solutions. That some special global solutions exist is easily derived from the fact that su(2) is a subalgebra of any compact semisimple Lie algebra. But the set of less trivial global solutions remains to be explored.Comment: 26 pages, 2 figures, LaTeX, misprints corrected, 1 reference adde

    Quasi-local mass in the covariant Newtonian space-time

    Full text link
    In general relativity, quasi-local energy-momentum expressions have been constructed from various formulae. However, Newtonian theory of gravity gives a well known and an unique quasi-local mass expression (surface integration). Since geometrical formulation of Newtonian gravity has been established in the covariant Newtonian space-time, it provides a covariant approximation from relativistic to Newtonian theories. By using this approximation, we calculate Komar integral, Brown-York quasi-local energy and Dougan-Mason quasi-local mass in the covariant Newtonian space-time. It turns out that Komar integral naturally gives the Newtonian quasi-local mass expression, however, further conditions (spherical symmetry) need to be made for Brown-York and Dougan-Mason expressions.Comment: Submit to Class. Quantum Gra

    Non-Relativistic Spacetimes with Cosmological Constant

    Full text link
    Recent data on supernovae favor high values of the cosmological constant. Spacetimes with a cosmological constant have non-relativistic kinematics quite different from Galilean kinematics. De Sitter spacetimes, vacuum solutions of Einstein's equations with a cosmological constant, reduce in the non-relativistic limit to Newton-Hooke spacetimes, which are non-metric homogeneous spacetimes with non-vanishing curvature. The whole non-relativistic kinematics would then be modified, with possible consequences to cosmology, and in particular to the missing-mass problem.Comment: 15 pages, RevTeX, no figures, major changes in the presentation which includes a new title and a whole new emphasis, version to appear in Clas. Quant. Gra

    Axially Symmetric Bianchi I Yang-Mills Cosmology as a Dynamical System

    Full text link
    We construct the most general form of axially symmetric SU(2)-Yang-Mills fields in Bianchi cosmologies. The dynamical evolution of axially symmetric YM fields in Bianchi I model is compared with the dynamical evolution of the electromagnetic field in Bianchi I and the fully isotropic YM field in Friedmann-Robertson-Walker cosmologies. The stochastic properties of axially symmetric Bianchi I-Einstein-Yang-Mills systems are compared with those of axially symmetric YM fields in flat space. After numerical computation of Liapunov exponents in synchronous (cosmological) time, it is shown that the Bianchi I-EYM system has milder stochastic properties than the corresponding flat YM system. The Liapunov exponent is non-vanishing in conformal time.Comment: 18 pages, 6 Postscript figures, uses amsmath,amssymb,epsfig,verbatim, to appear in CQ

    Connections and dynamical trajectories in generalised Newton-Cartan gravity I. An intrinsic view

    Full text link
    The "metric" structure of nonrelativistic spacetimes consists of a one-form (the absolute clock) whose kernel is endowed with a positive-definite metric. Contrarily to the relativistic case, the metric structure and the torsion do not determine a unique Galilean (i.e. compatible) connection. This subtlety is intimately related to the fact that the timelike part of the torsion is proportional to the exterior derivative of the absolute clock. When the latter is not closed, torsionfreeness and metric-compatibility are thus mutually exclusive. We will explore generalisations of Galilean connections along the two corresponding alternative roads in a series of papers. In the present one, we focus on compatible connections and investigate the equivalence problem (i.e. the search for the necessary data allowing to uniquely determine connections) in the torsionfree and torsional cases. More precisely, we characterise the affine structure of the spaces of such connections and display the associated model vector spaces. In contrast with the relativistic case, the metric structure does not single out a privileged origin for the space of metric-compatible connections. In our construction, the role of the Levi-Civita connection is played by a whole class of privileged origins, the so-called torsional Newton-Cartan (TNC) geometries recently investigated in the literature. Finally, we discuss a generalisation of Newtonian connections to the torsional case.Comment: 79 pages, 7 figures; v2: added material on affine structure of connection space, former Section 4 postponed to 3rd paper of the serie

    Global behavior of solutions to the static spherically symmetric EYM equations

    Get PDF
    The set of all possible spherically symmetric magnetic static Einstein-Yang-Mills field equations for an arbitrary compact semi-simple gauge group GG was classified in two previous papers. Local analytic solutions near the center and a black hole horizon as well as those that are analytic and bounded near infinity were shown to exist. Some globally bounded solutions are also known to exist because they can be obtained by embedding solutions for the G=SU(2)G=SU(2) case which is well understood. Here we derive some asymptotic properties of an arbitrary global solution, namely one that exists locally near a radial value r0r_{0}, has positive mass m(r)m(r) at r0r_{0} and develops no horizon for all r>r0r>r_{0}. The set of asymptotic values of the Yang-Mills potential (in a suitable well defined gauge) is shown to be finite in the so-called regular case, but may form a more complicated real variety for models obtained from irregular rotation group actions.Comment: 43 page

    Post-Newtonian extension of the Newton-Cartan theory

    Get PDF
    The theory obtained as a singular limit of General Relativity, if the reciprocal velocity of light is assumed to tend to zero, is known to be not exactly the Newton-Cartan theory, but a slight extension of this theory. It involves not only a Coriolis force field, which is natural in this theory (although not original Newtonian), but also a scalar field which governs the relation between Newtons time and relativistic proper time. Both fields are or can be reduced to harmonic functions, and must therefore be constants, if suitable global conditions are imposed. We assume this reduction of Newton-Cartan to Newton`s original theory as starting point and ask for a consistent post-Newtonian extension and for possible differences to usual post-Minkowskian approximation methods, as developed, for example, by Chandrasekhar. It is shown, that both post-Newtonian frameworks are formally equivalent, as far as the field equations and the equations of motion for a hydrodynamical fluid are concerned.Comment: 13 pages, LaTex, to appear in Class. Quantum Gra

    Spin operator and spin states in Galilean covariant Fermi field theories

    Full text link
    Spin degrees of freedom of the Galilean covariant Dirac field in (4+1) dimensions and its nonrelativistic counterpart in (3+1) dimensions are examined. Two standard choices of spin operator, the Galilean covariant and Dirac spin operators, are considered. It is shown that the Dirac spin of the Galilean covariant Dirac field in (4+1) dimensions is not conserved, and the role of non-Galilean boosts in its nonconservation is stressed out. After reduction to (3+1) dimensions the Dirac field turns into a nonrelativistic Fermi field with a conserved Dirac spin. A generalized form of the Levy-Leblond equations for the Fermi field is given. One-particle spin states are constructed. A particle-antiparticle system is discussed.Comment: Minor corrections in the text; journal versio
    • …
    corecore