We construct the most general form of axially symmetric SU(2)-Yang-Mills
fields in Bianchi cosmologies. The dynamical evolution of axially symmetric YM
fields in Bianchi I model is compared with the dynamical evolution of the
electromagnetic field in Bianchi I and the fully isotropic YM field in
Friedmann-Robertson-Walker cosmologies. The stochastic properties of axially
symmetric Bianchi I-Einstein-Yang-Mills systems are compared with those of
axially symmetric YM fields in flat space. After numerical computation of
Liapunov exponents in synchronous (cosmological) time, it is shown that the
Bianchi I-EYM system has milder stochastic properties than the corresponding
flat YM system. The Liapunov exponent is non-vanishing in conformal time.Comment: 18 pages, 6 Postscript figures, uses amsmath,amssymb,epsfig,verbatim,
to appear in CQ