596 research outputs found

    Post-Newtonian Theory for Precision Doppler Measurements of Binary Star Orbits

    Get PDF
    The determination of velocities of stars from precise Doppler measurements is described here using relativistic theory of astronomical reference frames so as to determine the Keplerian and post-Keplerian parameters of binary systems. We apply successive Lorentz transformations and the relativistic equation of light propagation to establish the exact treatment of Doppler effect in binary systems both in special and general relativity theories. As a result, the Doppler shift is a sum of (1) linear in c1c^{-1} terms, which include the ordinary Doppler effect and its variation due to the secular radial acceleration of the binary with respect to observer; (2) terms proportional to c2c^{-2}, which include the contributions from the quadratic Doppler effect caused by the relative motion of binary star with respect to the Solar system, motion of the particle emitting light and diurnal rotational motion of observer, orbital motion of the star around the binary's barycenter, and orbital motion of the Earth; and (3) terms proportional to c2c^{-2}, which include the contributions from redshifts due to gravitational fields of the star, star's companion, Galaxy, Solar system, and the Earth. After parameterization of the binary's orbit we find that the presence of periodically changing terms in the Doppler schift enables us disentangling different terms and measuring, along with the well known Keplerian parameters of the binary, four additional post-Keplerian parameters, including the inclination angle of the binary's orbit, ii. We briefly discuss feasibility of practical implementation of these theoretical results, which crucially depends on further progress in the technique of precision Doppler measurements.Comment: Minor changes, 1 Figure included, submitted to Astrophys.

    Self-consistency of relativistic observables with general relativity in the white dwarf-neutron star binary pulsar PSR J1141-6545

    Full text link
    Here we report timing measurements of the relativistic binary pulsar PSR J1141-6545 that constrain the component masses and demonstrate that the orbital period derivative \dot Pb = (-4+/-1)x10^-13 is consistent with gravitational wave emission as described by the general theory of relativity. The mass of the neutron star and its companion are 1.30+/-0.02 Mo and 0.986+/-0.020 Mo respectively, suggesting a white dwarf companion, and extending the range of systems for which general relativity provides a correct description. On evolutionary grounds, the progenitor mass of PSR J1141-6545 should be near the minimum for neutron star production. Its mass is two standard deviations below the mean of the other neutron stars, suggesting a relationship between progenitor and remnant masses.Comment: 10 pages, 2 figures, revised version to Ap J Letter

    On the equation of motion of compact binaries in Post-Newtonian approximation

    Full text link
    A third post-Newtonian (3 PN) equation of motion for two spherical compact stars in a harmonic coordinate has been derived based on the surface integral approach and the strong field point particle limit. The strong field point particle limit enables us to incorporate a notion of a self-gravitating regular star into general relativity. The resulting 3 PN equation of motion is Lorentz invariant, unambiguous, and conserves an energy of the binary orbital motion.Comment: 7 pages, no figure. Proceedings of the 5th Amaldi Conference on Gravitational Waves, Pisa, Italy, 6-11 July 200

    Gravitational-wave versus binary-pulsar tests of strong-field gravity

    Full text link
    Binary systems comprising at least one neutron star contain strong gravitational field regions and thereby provide a testing ground for strong-field gravity. Two types of data can be used to test the law of gravity in compact binaries: binary pulsar observations, or forthcoming gravitational-wave observations of inspiralling binaries. We compare the probing power of these two types of observations within a generic two-parameter family of tensor-scalar gravitational theories. Our analysis generalizes previous work (by us) on binary-pulsar tests by using a sample of realistic equations of state for nuclear matter (instead of a polytrope), and goes beyond a previous study (by C.M. Will) of gravitational-wave tests by considering more general tensor-scalar theories than the one-parameter Jordan-Fierz-Brans-Dicke one. Finite-size effects in tensor-scalar gravity are also discussed.Comment: 23 pages, REVTeX 3.0, uses epsf.tex to include 5 postscript figures (2 paragraphs and a 5th figure added at the end of section IV + minor changes

    The Equivalence Principle and the Constants of Nature

    Full text link
    We briefly review the various contexts within which one might address the issue of ``why'' the dimensionless constants of Nature have the particular values that they are observed to have. Both the general historical trend, in physics, of replacing a-priori-given, absolute structures by dynamical entities, and anthropic considerations, suggest that coupling ``constants'' have a dynamical nature. This hints at the existence of observable violations of the Equivalence Principle at some level, and motivates the need for improved tests of the Equivalence Principle.Comment: 12 pages; invited talk at the ISSI Workshop on the Nature of Gravity: Confronting Theory and Experiment in Space, Bern, Switzerland, 6-10 October 2008; to appear in Space Science Review

    Sugawara-type constraints in hyperbolic coset models

    Full text link
    In the conjectured correspondence between supergravity and geodesic models on infinite-dimensional hyperbolic coset spaces, and E10/K(E10) in particular, the constraints play a central role. We present a Sugawara-type construction in terms of the E10 Noether charges that extends these constraints infinitely into the hyperbolic algebra, in contrast to the truncated expressions obtained in arXiv:0709.2691 that involved only finitely many generators. Our extended constraints are associated to an infinite set of roots which are all imaginary, and in fact fill the closed past light-cone of the Lorentzian root lattice. The construction makes crucial use of the E10 Weyl group and of the fact that the E10 model contains both D=11 supergravity and D=10 IIB supergravity. Our extended constraints appear to unite in a remarkable manner the different canonical constraints of these two theories. This construction may also shed new light on the issue of `open constraint algebras' in traditional canonical approaches to gravity.Comment: 49 page

    Coalescence of Two Spinning Black Holes: An Effective One-Body Approach

    Full text link
    We generalize to the case of spinning black holes a recently introduced ``effective one-body'' approach to the general relativistic dynamics of binary systems. The combination of the effective one-body approach, and of a Pad\'e definition of some crucial effective radial functions, is shown to define a dynamics with much improved post-Newtonian convergence properties, even for black hole separations of the order of 6GM/c26 GM / c^2. We discuss the approximate existence of a two-parameter family of ``spherical orbits'' (with constant radius), and, of a corresponding one-parameter family of ``last stable spherical orbits'' (LSSO). These orbits are of special interest for forthcoming LIGO/VIRGO/GEO gravitational wave observations. It is argued that for most (but not all) of the parameter space of two spinning holes the effective one-body approach gives a reliable analytical tool for describing the dynamics of the last orbits before coalescence. This tool predicts, in a quantitative way, how certain spin orientations increase the binding energy of the LSSO. This leads to a detection bias, in LIGO/VIRGO/GEO observations, favouring spinning black hole systems, and makes it urgent to complete the conservative effective one-body dynamics given here by adding (resummed) radiation reaction effects, and by constructing gravitational waveform templates that include spin effects. Finally, our approach predicts that the spin of the final hole formed by the coalescence of two arbitrarily spinning holes never approaches extremality.Comment: 26 pages, two eps figures, accepted in Phys. Rev. D, minor updating of the text, clarifications added and inclusion of a few new reference

    Second post-Newtonian gravitational wave polarizations for compact binaries in elliptical orbits

    Get PDF
    The second post-Newtonian (2PN) contribution to the `plus' and `cross' gravitational wave polarizations associated with gravitational radiation from non-spinning, compact binaries moving in elliptic orbits is computed. The computation starts from our earlier results on 2PN generation, crucially employs the 2PN accurate generalized quasi-Keplerian parametrization of elliptic orbits by Damour, Sch\"afer and Wex and provides 2PN accurate expressions modulo the tail terms for gravitational wave polarizations incorporating effects of eccentricity and periastron precession.Comment: 40 pages, 10 figures, To appear in Phys. Rev.

    Relativistic theory of elastic deformable astronomical bodies: perturbation equations in rotating spherical coordinates and junction conditions

    Full text link
    In this paper, the dynamical equations and junction conditions at the interface between adjacent layers of different elastic properties for an elastic deformable astronomical body in the first post-Newtonian approximation of Einstein theory of gravity are discussed in both rotating Cartesian coordinates and rotating spherical coordinates. The unperturbed rotating body (the ground state) is described as uniformly rotating, stationary and axisymmetric configuration in an asymptotically flat space-time manifold. Deviations from the equilibrium configuration are described by means of a displacement field. In terms of the formalism of relativistic celestial mechanics developed by Damour, Soffel and Xu, and the framework established by Carter and Quintana the post Newtonian equations of the displacement field and the symmetric trace-free shear tensor are obtained. Corresponding post-Newtonian junction conditions at interfaces also the outer surface boundary conditions are presented. The PN junction condition is an extension of Wahr's one which is a Newtonian junction conditions without rotating.Comment: Revtex4, 14 page

    General relativistic dynamics of compact binaries at the third post-Newtonian order

    Get PDF
    The general relativistic corrections in the equations of motion and associated energy of a binary system of point-like masses are derived at the third post-Newtonian (3PN) order. The derivation is based on a post-Newtonian expansion of the metric in harmonic coordinates at the 3PN approximation. The metric is parametrized by appropriate non-linear potentials, which are evaluated in the case of two point-particles using a Lorentzian version of an Hadamard regularization which has been defined in previous works. Distributional forms and distributional derivatives constructed from this regularization are employed systematically. The equations of motion of the particles are geodesic-like with respect to the regularized metric. Crucial contributions to the acceleration are associated with the non-distributivity of the Hadamard regularization and the violation of the Leibniz rule by the distributional derivative. The final equations of motion at the 3PN order are invariant under global Lorentz transformations, and admit a conserved energy (neglecting the radiation reaction force at the 2.5PN order). However, they are not fully determined, as they depend on one arbitrary constant, which reflects probably a physical incompleteness of the point-mass regularization. The results of this paper should be useful when comparing theory to the observations of gravitational waves from binary systems in future detectors VIRGO and LIGO.Comment: 78 pages, submitted to Phys. Rev. D, with minor modification
    corecore