5,579 research outputs found

    Efficient generation of distant atom entanglement

    Full text link
    We show how the entanglement of two atoms, trapped in distant separate cavities, can be generated with arbitrarily high probability of success. The scheme proposed employs sudden excitation of the atoms proving that the weakly driven condition is not necessary to obtain the success rate close to unity. The modified scheme works properly even if each cavity contains many atoms interacting with the cavity modes. We also show that our method is robust against the spontaneous atomic decay.Comment: 4 pages, 5 figure

    Entangled-state cycles from conditional quantum evolution

    Get PDF
    A system of cascaded qubits interacting via the oneway exchange of photons is studied. While for general operating conditions the system evolves to a superposition of Bell states (a dark state) in the long-time limit, under a particular resonance condition no steady state is reached within a finite time. We analyze the conditional quantum evolution (quantum trajectories) to characterize the asymptotic behavior under this resonance condition. A distinct bimodality is observed: for perfect qubit coupling, the system either evolves to a maximally entangled Bell state without emitting photons (the dark state), or executes a sustained entangled-state cycle - random switching between a pair of Bell states while emitting a continuous photon stream; for imperfect coupling, two entangled-state cycles coexist, between which a random selection is made from one quantum trajectory to another.Comment: 12 pages, 10 figure

    Teleportation with insurance of an entangled atomic state via cavity decay

    Full text link
    We propose a scheme to teleport an entangled state of two Λ\Lambda-type three-level atoms via photons. The teleportation protocol involves the local redundant encoding protecting the initial entangled state and allowing for repeating the detection until quantum information transfer is successful. We also show how to manipulate a state of many Λ\Lambda-type atoms trapped in a cavity.Comment: 8 pages, 5 figure

    Effect of atomic beam alignment on photon correlation measurements in cavity QED

    Full text link
    Quantum trajectory simulations of a cavity QED system comprising an atomic beam traversing a standing-wave cavity are carried out. The delayed photon coincident rate for forwards scattering is computed and compared with the measurements of Rempe et al. [Phys. Rev. Lett. 67, 1727 (1991)] and Foster et al. [Phys. Rev. A 61, 053821 (2000)]. It is shown that a moderate atomic beam misalignment can account for the degradation of the predicted correlation. Fits to the experimental data are made in the weak-field limit with a single adjustable parameter--the atomic beam tilt from perpendicular to the cavity axis. Departures of the measurement conditions from the weak-field limit are discussed.Comment: 15 pages and 13 figure

    Summary of past experience in natural laminar flow and experimental program for resilient leading edge

    Get PDF
    The potential of natural laminar flow for significant drag reduction and improved efficiency for aircraft is assessed. Past experience with natural laminar flow as reported in published and unpublished data and personal observations of various researchers is summarized. Aspects discussed include surface contour, waviness, and smoothness requirements; noise and vibration effects on boundary layer transition, boundary layer stability criteria; flight experience with natural laminar flow and suction stabilized boundary layers; and propeller slipstream, rain, frost, ice and insect contamination effects on boundary layer transition. The resilient leading edge appears to be a very promising method to prevent leading edge insect contamination

    Self-Consistency of Thermal Jump Trajectories

    Get PDF
    It is problematic to interpret the quantum jumps of an atom interacting with thermal light in terms of counts at detectors monitoring the atom's inputs and outputs. As an alternative, we develop an interpretation based on a self-consistency argument. We include one mode of the thermal field in the system Hamiltonian and describe its interaction with the atom by an entangled quantum state while assuming that the other modes induce quantum jumps in the usual fashion. In the weak-coupling limit, the photon number expectation of the selected mode is also seen to execute quantum jumps, although more generally, for stronger coupling, Rabi oscillations are observed; the equilibrium photon number distribution is a Bose-Einstein distribution. Each mode may be viewed in isolation in a similar fashion, and summing over their weak-coupling jump rates returns the net jump rates for the atom assumed at the outset
    corecore