1,233 research outputs found

    Constraints on Higher-Order Perturbative Corrections in bub\to u Semileptonic Decays from Residual Renormalization-Scale Dependence

    Get PDF
    The constraint of a progressive decrease in residual renormalization scale dependence with increasing loop order is developed as a method for obtaining bounds on unknown higher-order perturbative corrections to renormalization-group invariant quantities. This technique is applied to the inclusive semileptonic process buνˉb\to u \bar\nu_\ell\ell^- (explicitly known to two-loop order) to obtain bounds on the three- and four-loop perturbative coefficients that are not accessible via the renormalization group. Using the principle of minimal sensitivity, an estimate is obtained for the perturbative contributions to Γ(buνˉ)\Gamma(b\to u \bar\nu_\ell\ell^-) that incorporates theoretical uncertainty from as-yet-undetermined higher order QCD corrections.Comment: latex2e using amsmath, 8 pages, 4 embedded eps figures. Revised version contains an additional figure and accompanying revision

    The Skyrme model predictions for the 27J=3/2{\bf 27}_{J=3/2} mass spectrum and the 273/2{\bf 27}_{3/2}-10ˉ\bar{\bf 10} mass splittings

    Full text link
    The 27J=3/2{\bf 27}_{J=3/2}-plet mass spectrum and the 273/2{\bf 27}_{3/2}-10ˉ\bar{\bf 10} mass splittings are computed in the framework of the minimal SU(3)f_f extended Skyrme model. As functions of the Skyrme charge ee and the SU(3)f_f symmetry breaking parameters the predictions are presented in tabular form. The predicted mass splitting 273/2{\bf 27}_{3/2}-10ˉ\bar{\bf 10} is the smallest among all SU(3)f_f baryonic multiplets.Comment: 4 pages, 2 tables, version to appear in Phys. Rev.

    Muon-Induced Background Study for an Argon-Based Long Baseline Neutrino Experiment

    Full text link
    We evaluated rates of transversing muons, muon-induced fast neutrons, and production of 40^{40}Cl and other cosmogenically produced nuclei that pose as potential sources of background to the physics program proposed for an argon-based long baseline neutrino experiment at the Sanford Underground Research Facility (SURF). The Geant4 simulations were carried out with muons and muon-induced neutrons for both 800 ft (0.712 km.w.e.) and 4850 ft levels (4.3 km.w.e.). We developed analytic models to independently calculate the 40^{40}Cl production using the measured muon fluxes at different levels of the Homestake mine. The muon induced 40^{40}Cl production rates through stopped muon capture and the muon-induced neutrons and protons via (n,p) and (p,n) reactions were evaluated. We find that the Monte Carlo simulated production rates of 40^{40}Cl agree well with the predictions from analytic models. A depth-dependent parametrization was developed and benchmarked to the direct analytic models. We conclude that the muon-induced processes will result in large backgrounds to the physics proposed for an argon-based long baseline neutrino experiment at a depth of less than 4.0 km.w.e.Comment: 12 pages, 15 figure

    Study of Charmonia near the deconfining transition on an anisotropic lattice with O(a) improved quark action

    Get PDF
    We study hadron properties near the deconfining transition in the quenched lattice QCD simulation. This paper focuses on the heavy quarkonium states, such as J/ψJ/\psi meson. In order to treat heavy quarks at T>0T>0, we adopt the O(a)O(a) improved Wilson action on anisotropic lattice. We discuss ccˉc\bar{c} bound state observing the wave function and compare the meson correlators at above and below TcT_c. Although we find a large change of correlator near the TcT_c, the strong spatial correlation which is almost the same as confinement phase survives even T1.5TcT\sim 1.5T_c.Comment: 19 pages, 10 figure

    Testing the Unitarity of the CKM Matrix with a Space-Based Neutron Decay Experiment

    Full text link
    If the Standard Model is correct, and fundamental fermions exist only in the three generations, then the CKM matrix should be unitary. However, there remains a question over a deviation from unitarity from the value of the neutron lifetime. We discuss a simple space-based experiment that, at an orbit height of 500 km above Earth, would measure the kinetic-energy, solid-angle, flux spectrum of gravitationally bound neutrons (kinetic energy K<0.606 eV at this altitude). The difference between the energy spectrum of neutrons that come up from the Earth's atmosphere and that of the undecayed neutrons that return back down to the Earth would yield a measurement of the neutron lifetime. This measurement would be free of the systematics of laboratory experiments. A package of mass <25<25 kg could provide a 10^{-3} precision in two years.Comment: 10 pages, 4 figures. Revised and updated for publicatio

    Proton Stability in Six Dimensions

    Get PDF
    We show that Lorentz and gauge invariance explain the long proton lifetime within the standard model in six dimensions. The baryon-number violating operators have mass dimension 15 or higher. Upon TeV-scale compactification of the two universal extra dimensions on a square T2/Z2T^2/Z_2 orbifold, a discrete subgroup of the 6-dimensional Lorentz group continues to forbid dangerous operators.Comment: PRL accepted versio

    Lepton Numbers in the framework of Neutrino Mixing

    Get PDF
    In this short review we discuss the notion of lepton numbers. The strong evidence in favor of neutrino oscillations obtained recently in the Super-Kamiokande atmospheric neutrino experiment and in solar neutrino experiments imply that the law of conservation of family lepton numbers L_e, L_mu and L_tau is strongly violated. We consider the states of flavor neutrinos nu_e, nu_mu and nu_tau and we discuss the evolution of these states in space and time in the case of non-conservation of family lepton numbers due to the mixing of light neutrinos. We discuss and compare different flavor neutrino discovery experiments. We stress that experiments on the search for nu_mu->nu_tau and nu_e->nu_tau oscillations demonstrated that the flavor neutrino nu_tau is a new type of neutrino, different from nu_e and nu_mu. In the case of neutrino mixing, the lepton number (only one) is connected with the nature of massive neutrinos. Such conserved lepton number exist if massive neutrinos are Dirac particles. We review possibilities to check in future experiments whether the conserved lepton number exists.Comment: 20 page

    Astrophysical implications of hypothetical stable TeV-scale black holes

    Get PDF
    We analyze macroscopic effects of TeV-scale black holes, such as could possibly be produced at the LHC, in what is regarded as an extremely hypothetical scenario in which they are stable and, if trapped inside Earth, begin to accrete matter. We examine a wide variety of TeV-scale gravity scenarios, basing the resulting accretion models on first-principles, basic, and well-tested physical laws. These scenarios fall into two classes, depending on whether accretion could have any macroscopic effect on the Earth at times shorter than the Sun's natural lifetime. We argue that cases with such effect at shorter times than the solar lifetime are ruled out, since in these scenarios black holes produced by cosmic rays impinging on much denser white dwarfs and neutron stars would then catalyze their decay on timescales incompatible with their known lifetimes. We also comment on relevant lifetimes for astronomical objects that capture primordial black holes. In short, this study finds no basis for concerns that TeV-scale black holes from the LHC could pose a risk to Earth on time scales shorter than the Earth's natural lifetime. Indeed, conservative arguments based on detailed calculations and the best-available scientific knowledge, including solid astronomical data, conclude, from multiple perspectives, that there is no risk of any significance whatsoever from such black holes.Comment: Version2: Minor corrections/fixed typos; updated reference

    Lepton Flavor Violation in Supersymmetric SO(10) Grand Unified Models

    Get PDF
    The study for lepton flavor violation combined with the neutrino oscillation may provide more information about the lepton flavor structure of the grand unified theory. In this paper, we study two lepton flavor violation processes, τμγ\tau\to \mu\gamma and ZτμZ\to \tau\mu, in the context of supersymmetric SO(10) grand unified models. We find the two processes are both of phenomenological interest. In particular the latter may be important in some supersymmetric parameter space where the former is suppressed. Thus, Z-dacay may offer another chance for looking for lepton flavor violation.Comment: 26 pages, 10 figure
    corecore