115 research outputs found
Shear-Induced Isotropic-to-Lamellar Transition in a Lattice-Gas Model of Ternary Amphiphilic Fluids
Although shear-induced isotropic-to-lamellar transitions in ternary systems
of oil, water and surfactant have been observed experimentally and predicted
theoretically by simple models for some time now, their numerical simulation
has not been achieved so far. In this work we demonstrate that a recently
introduced hydrodynamic lattice-gas model of amphiphilic fluids is well suited
for this purpose: the two-dimensional version of this model does indeed exhibit
a shear-induced isotropic-to-lamellar phase transition.Comment: 17 pages, LaTeX with epsf and REVTeX, PostScript and EPS
illustrations included. To appear in J. Phys. Cond. Ma
Collective dynamics of strain-coupled nanomechanical pillar resonators
Semiconductur nano- and micropillars represent a promising platform for hybrid nanodevices. Their ability to couple to a broad variety of nanomechanical, acoustic, charge, spin, excitonic, polaritonic, or electromagnetic excitations is utilized in fields as diverse as force sensing or optoelectronics. In order to fully exploit the potential of these versatile systems e.g. for metamaterials, synchronization or topologically protected devices an intrinsic coupling mechanism between individual pillars needs to be established. This can be accomplished by taking advantage of the strain field induced by the flexural modes of the pillars. Here, we demonstrate strain-induced, strong coupling between two adjacent nanomechanical pillar resonators. Both mode hybridization and the formation of an avoided level crossing in the response of the nanopillar pair are experimentally observed. The described coupling mechanism is readily scalable, enabling hybrid nanomechanical resonator networks for the investigation of a broad range of collective dynamical phenomena
Anisotropic optical conductivity of the putative Kondo insulator CeRuSn
Kondo insulators and in particular their non-cubic representatives have
remained poorly understood. Here we report on the development of an anisotropic
energy pseudogap in the tetragonal compound CeRuSn employing optical
reflectivity measurements in broad frequency and temperature ranges, and local
density approximation plus dynamical mean field theory calculations. The
calculations provide evidence for a Kondo insulator-like response within the
plane and a more metallic response along the c axis and qualitatively
reproduce the experimental observations, helping to identify their origin
Microwave Dielectric Loss at Single Photon Energies and milliKelvin Temperatures
The microwave performance of amorphous dielectric materials at very low
temperatures and very low excitation strengths displays significant excess
loss. Here, we present the loss tangents of some common amorphous and
crystalline dielectrics, measured at low temperatures (T < 100 mK) with near
single-photon excitation energies, using both coplanar waveguide (CPW) and
lumped LC resonators. The loss can be understood using a two-level state (TLS)
defect model. A circuit analysis of the half-wavelength resonators we used is
outlined, and the energy dissipation of such a resonator on a multilayered
dielectric substrate is considered theoretically.Comment: 4 pages, 3 figures, submitted to Applied Physics Letter
Single electron-phonon interaction in a suspended quantum dot phonon cavity
An electron-phonon cavity consisting of a quantum dot embedded in a
free-standing GaAs/AlGaAs membrane is characterized in Coulomb blockade
measurements at low temperatures. We find a complete suppression of single
electron tunneling around zero bias leading to the formation of an energy gap
in the transport spectrum. The observed effect is induced by the excitation of
a localized phonon mode confined in the cavity. This phonon blockade of
transport is lifted at magnetic fields where higher electronic states with
nonzero angular momentum are brought into resonance with the phonon energy.Comment: 4 pages, 4 figure
Cavity cooling of a nanomechanical resonator by light scattering
We present a novel method for opto-mechanical cooling of sub-wavelength sized
nanomechanical resonators. Our scheme uses a high finesse Fabry-Perot cavity of
small mode volume, within which the nanoresonator is acting as a
position-dependant perturbation by scattering. In return, the back-action
induced by the cavity affects the nanoresonator dynamics and can cool its
fluctuations. We investigate such cavity cooling by scattering for a nanorod
structure and predict that ground-state cooling is within reach.Comment: 4 pages, 3 figure
A Carbon Nanofilament-Bead Necklace
Carbon nanofilaments with carbon beads grown on their surfaces were successfully synthesized reproducibly by a floating catalyst CVD method. The nanofilaments hosting the pearl-like structures typically show an average diameter of about 60 nm, which mostly consists of low-ordered graphite layers. The beads with diameter range 150−450 nm are composed of hundreds of crumpled and random graphite layers. The mechanism for the formation of these beaded nanofilaments is ascribed to two nucleation processes of the pyrolytic carbon deposition, arising from a temperature gradient between different parts of the reaction chamber. Furthermore, the Raman scattering properties of the beaded nanofilaments have been measured, as well as their confocal Raman G-line images. The Raman spectra reveal that that the trunks of the nanofilaments have better graphitic properties than the beads, which is consistent with the HRTEM analysis. The beaded nanofilaments are expected to have high potential applications in composites, which should exhibit both particle- and fiber-reinforcing functions for the host matrixes
Optical Phonon Lasing in Semiconductor Double Quantum Dots
We propose optical phonon lasing for a double quantum dot (DQD) fabricated in
a semiconductor substrate. We show that the DQD is weakly coupled to only two
LO phonon modes that act as a natural cavity. The lasing occurs for pumping the
DQD via electronic tunneling at rates much higher than the phonon decay rate,
whereas an antibunching of phonon emission is observed in the opposite regime
of slow tunneling. Both effects disappear with an effective thermalization
induced by the Franck-Condon effect in a DQD fabricated in a carbon nanotube
with a strong electron-phonon coupling.Comment: 8 pages, 4 figure
Lattice-Gas Simulations of Minority-Phase Domain Growth in Binary Immiscible and Ternary Amphiphilic Fluid
We investigate the growth kinetics of binary immiscible fluids and emulsions
in two dimensions using a hydrodynamic lattice-gas model. We perform
off-critical quenches in the binary fluid case and find that the domain size
within the minority phase grows algebraically with time in accordance with
theoretical predictions. In the late time regime we find a growth exponent n =
0.45 over a wide range of concentrations, in good agreement with other
simluations. In the early time regime we find no universal growth exponent but
a strong dependence on the concentration of the minority phase. In the ternary
amphiphilic fluid case the kinetics of self assembly of the droplet phase are
studied for the first time. At low surfactant concentrations, we find that,
after an early algebraic growth, a nucleation regime dominates the late-time
kinetics, which is enhanced by an increasing concentration of surfactant. With
a further increase in the concentration of surfactant, we see a crossover to
logarithmically slow growth, and finally saturation of the oil droplets, which
we fit phenomenologically to a stretched exponential function. Finally, the
transition between the droplet and the sponge phase is studied.Comment: 22 pages, 13 figures, submitted to PR
Signatures of resonance superfluidity in a quantum Fermi gas
In this letter, we predict a direct and observable signature of the
superfluid phase in a quantum Fermi gas, in a temperature regime already
accessible in current experiments. We apply the theory of resonance
superfluidity to a gas confined in a harmonic potential and demonstrate that a
significant increase in density will be observed in the vicinity of the trap
center.Comment: 4 pages, 4 figure
- …