5,989 research outputs found

    Stage Definition for AHS Deployment and an AHS Evolutionary Scenario

    Get PDF
    Pros and cons of various mature Automated Highway Systems (AHS) have been a subject of intense study. However, such discussions are nothing but intellectual exercises unless the issue of how to evolve, in a planned and managed fashion, the current highway systems towards these mature AHS is also addressed. Since full functionality of a mature AHS cannot be realized suddenly, discrete functional steps must be identified and optimized. This paper defines an evolutionary stage towards a mature AHS as any discernible functional increment whose realization may encounter considerable difficulties requiring a significant amount of conscious effort to overcome. A good evolutionary scenario consists of stages each of which provides sufficient additional functionality that justifies the required effort to overcome the associated difficulties. Six dimensions of deployment difficulties are identified: technology, infrastructure, human factors, vehicle manufacturing and mainlenance. insurance and public will. An illustrative evolutionary scenario is also provided. Since issues regarding deploying AHS in the real world actually dictate AHS technological requirements, deployment research should be an integral part of AHS concept definition/evaluation and system design

    Feasibility Of One–Dedicated–Lane Bus Rapid Transit ⁄Light–Rail Systems And Their Expansion To Two–Dedicated–Lane Systems: A Focus On Geometric Configuration And Performance Planning, MTI Report 08-01

    Get PDF
    This report consists primarily of two parts, the first on feasibility and the next on space minimization. In the section on feasibility, we propose the concept of a Bus Rapid Transit (BRT) or light–rail system that effectively requires only one dedicated but reversible lane throughout the system to support two-way traffic in the median of a busy commute corridor with regular provision of left–turn lanes. Based on key ideas proposed in that section, the section on space minimization first addresses how to implement a two–dedicated–lane BRT or light–rail system with minimum right–of–way width and then proposes ways to expand a one–dedicated–lane system to two dedicated lanes. In a one–dedicated–lane system, traffic crossing is accommodated on the otherwise unused or underused median space resulting from provision of the left–turn lanes. Although not necessary, some left–turn lanes can be sacrificed for bus stops. Conceptual design options and geometric configuration sketches for the bus stop and crossing space are provided in the section on feasibility, which also discusses system performance in terms of travel speed, headway of operations, distance between two neighboring crossing spaces, and number of crossing spaces. To ensure practicality, we study implementation of such a system on an existing corridor. Such a system is also useful as an intermediate step toward a two–dedicated–lane system because of its potential for facilitating transit–oriented development. In typical existing or planned BRT or light–rail systems implemented with two dedicated traffic lanes, a space equivalent to four traffic lanes is dedicated for a bus stop. In the section on space minimization, we propose implementations requiring only three lanes at a bus stop, based on two key ideas proposed for a one–dedicated–lane system. That section also discusses ways to expand a one–dedicated–lane system to its corresponding two–dedicated–lane system

    Implications of cross section errors for cosmic ray propagation

    Get PDF
    Errors in nuclear interaction cross sections are the single most important limitation on the analysis of cosmic ray composition data. At the 18th International Cosmic Ray Conference, the potential importance of correlations in cross section errors in determining cosmic ray source abundances was demonstrated. In this paper the magnitude of cross section error correlation is estimated. Analysis suggests that cross section errors are essentially uncorrelated for nuclei with Z 29 and that the actual errors may be less than the nominal 35%

    Melanocytes are selectively vulnerable to UVA-mediated bystander oxidative signaling.

    Get PDF
    Long-wave UVA is the major component of terrestrial UV radiation and is also the predominant constituent of indoor sunlamps, both of which have been shown to increase cutaneous melanoma risk. Using a two-chamber model, we show that UVA-exposed target cells induce intercellular oxidative signaling to non-irradiated bystander cells. This UVA-mediated bystander stress is observed between all three cutaneous cell types (i.e., keratinocytes, melanocytes, and fibroblasts). Significantly, melanocytes appear to be more resistant to direct UVA effects compared with keratinocytes and fibroblasts, although melanocytes are also more susceptible to bystander oxidative signaling. The extensive intercellular flux of oxidative species has not been previously appreciated and could possibly contribute to the observed cancer risk associated with prolonged UVA exposure

    Gamma ray line production from cosmic ray spallation reactions

    Get PDF
    The gamma ray line intensities due to cosmic ray spallation reactions in clouds, the galactic disk and accreting binary pulsars are calculated. With the most favorable plausible assumptions, only a few lines may be detectable to the level of 0.0000001 per sq. cm per sec. The intensities are compared with those generated in nuclear excitation reactions

    Calculation of improved spallation cross sections

    Get PDF
    Several research groups have recently carried out highly precise measurements (to about 10 percent) of high-energy nuclear spallation cross sections. These measurements, above 5 GeV, cover a broad range of elements: V, Fe, Cu, Ag, Ta and Au. Even the small cross sections far off the peak of the isotopic distribution curves have been measured. The semiempirical calculations are compared with the measured values. Preliminary comparisons indicate that the parameters of our spallation relations (Silberberg and Tsao, 1973) for atomic numbers 20 to 83 need modifications, e.g. a reduced slope of the mass yield distribution, broader isotopic distributions, and a shift of the isotopic distribution toward the neutron-deficient side. The required modifications are negligible near Fe and Cu, but increase with increasing target mass

    A feasibility study of signal processing to improve antenna gain Final report

    Get PDF
    Feasibility of signal processor with phase isolator for adaptive antenna arra

    A Review of Backup Mechanism for Reducing Delamination when Drilling Composite Laminates

    Get PDF
    Over the past decades, composite materials have been increasingly utilized in various industries because of their superior mechanical properties and resistance to corrosion. Drilling is essential to produce precise holes when load-carrying structures are produced using composites. Because of the non-homogeneous and anisotropic property of composite laminates, delamination often occurs at the point where the drill exits, which affects reliability and safety. Some studies present a suppressed mechanism to prevent delamination when drilling composite laminates. The experimental results demonstrate delamination is significantly reduced by various suppressed mechanisms and greater feed rates produce the same level of delamination. The use of special drill geometries and backup has been demonstrated to be more advantageous than the use of adapted feed controls. The basis for the future development of a suppression mechanism for drilling composite laminates is determined

    Constraints on large scalar multiplets from perturbative unitarity

    Full text link
    We determine the constraints on the isospin and hypercharge of a scalar electroweak multiplet from partial-wave unitarity of tree-level scattering diagrams. The constraint from SU(2)_L interactions yields T <= 7/2 (i.e., n <= 8) for a complex scalar multiplet and T <= 4 (i.e., n <= 9) for a real scalar multiplet, where n = 2T+1 is the number of isospin states in the multiplet.Comment: 10 pages, 1 figure. v2: refs added, minor additions to text, submitted to PR

    A Cortical Region Consisting Entirely of Face-Selective Cells

    Get PDF
    Face perception is a skill crucial to primates. In both humans and macaque monkeys, functional magnetic resonance imaging (fMRI) reveals a system of cortical regions that show increased blood flow when the subject views images of faces, compared with images of objects. However, the stimulus selectivity of single neurons within these fMRI-identified regions has not been studied. We used fMRI to identify and target the largest face-selective region in two macaques for single-unit recording. Almost all (97%) of the visually responsive neurons in this region were strongly face selective, indicating that a dedicated cortical area exists to support face processing in the macaque
    • 

    corecore