860 research outputs found

    Ion-induced nucleation: A density functional approach

    Get PDF
    Density functional theory is applied to ion-induced nucleation of dipolar molecules. The predicted reversible work shows a sign preference, resulting in a difference in the nucleation rate by a factor of 10–10^2, for realistic values of model parameters. The sign effect is found to decrease systematically as the supersaturation is increased. The asymmetry of a molecule is shown to be directly responsible for the sign preference in ion-induced nucleation

    Humidity effects on adhesion of nickel-zinc ferrite in elastic contact with magnetic tape and itself

    Get PDF
    The effects of humidity on the adhesion of Ni-Zn ferrite and magnetic tape in elastic contact with a Ni-Zn ferrite hemispherical pin in moist nitrogen were studied. Adhesion was independent of normal load in dry, humid, and saturated nitrogen. Ferrites adhere to ferrites in a saturated atmosphere primarily from the surface tension effects of a thin film of water adsorbed on the ferrite surfaces. The surface tension of the water film calculated from the adhesion results was 48 times 0.00001 to 56 times 0.00001 N/cm; the accepted value for water is 72.7 x 0.00001 N/cm. The adhesion of ferrite-ferrite contacts increased gradually with increases in relative humidity to 80 percent, but rose rapidly above 80 percent. The adhesion at saturation was 30 times or more greater than that below 80 percent relative humidity. Although the adhesion of magnetic tape - ferrite contacts remained low below 40 percent relative humidity and the effect of humidity was small, the adhesion increased considerably with increasing relative humidity above 40 percent. The changes in adhesion of elastic contacts were reversible on humidifying and dehumidifying

    Octet and Decuplet Baryons in a Confining and Covariant Diquark-Quark Model

    Get PDF
    We treat baryons as bound states of scalar or axialvector diquarks and a constituent quark which interact through quark exchange. We obtain fully four-dimensional wave functions for both octet and decuplet baryons as solutions of the corresponding Bethe-Salpeter equation. Applications currently under investigation are: electromagnetic and strong form factors and strangeness production processes.Comment: 4 pages, 1 figure; talk given by R. Alkofer at PANIC 9

    Association between Choroidal Characteristics and Systemic Severity in Amyloidosis

    Get PDF
    PURPOSE: This study aimed to describe the choroidal features of ocular amyloidosis using multimodal imaging, to correlate these findings with systemic involvement, and to propose a choroidal grading system. METHODS: Eleven patients with systemic amyloidosis were reviewed retrospectively. Each case was assigned a grade according to the severity of choroidal findings as determined by both enhanced depth imaging optical coherence tomography and indocyanine green angiography. The severity of systemic amyloidosis was then correlated with the choroidal involvement. RESULTS: On indocyanine green angiography, all patients exhibited hyperfluorescent spots in the late stage and were classified according to preexisting criteria. On enhanced depth imaging optical coherence tomography, hyperreflective foci were seen in the choriocapillaris and Sattler's layer in Grade 1, partial loss of Sattler's layer was additionally seen in Grade 2, and a dense hyperreflective Haller's layer was seen in Grade 3. Choroidal grading scores were significantly correlated with the systemic severity score (P = 0.0014, Pearson's correlation coefficient; ρ = 0.83). CONCLUSION: With ocular amyloidosis, evaluation of choroidal characteristics using multimodal imaging may serve as a biomarker for systemic involvement

    Study of relativistic bound states for scalar theories in Bethe-Salpeter and Dyson-Schwinger formalism

    Full text link
    The Bethe-Salpeter equation for Wick-Cutkosky like models is solved in dressed ladder approximation. The bare vertex truncation of the Dyson-Schwinger equations for propagators is combined with the dressed ladder Bethe-Salpeter equation for the scalar S-wave bound state amplitudes. With the help of spectral representation the results are obtained directly in Minkowski space. We give a new analytic formula for the resulting equation simplifying the numerical treatment. The bare ladder approximation of Bethe-Salpeter equation is compared with the one with dressed ladder. The elastic electromagnetic form factors is calculated within the relativistic impulse approximation.Comment: 30 pages, 10 figures, accepted for publication in Phys. Rev.

    Consideration for Affects of an XOR in a Random Number Generator Using Ring Oscillators

    Get PDF
    A cloud service to offer entropy has been paid much attention to. As one of the entropy sources, a physical random number generator is used as a true random number generator, relying on its irreproducibility. This paper focuses on a physical random number generator using a field-programmable gate array as an entropy source by employing ring oscillator circuits as a representative true random number generator. This paper investigates the effects of an XOR gate in the oscillation circuit by observing the output signal period. It aims to reveal the relationship between inputs and the output through the XOR gate in the target generator. The authors conduct two experiments to consider the relevance. It is confirmed that combining two ring oscillators with an XOR gate increases the complexity of the output cycle. In addition, verification using state transitions showed that the probability of the state transitions was evenly distributed by increasing the number of ring oscillator circuits

    Direct evaluation of the equilibrium distribution of physical clusters by a grand canonical Monte Carlo simulation

    Get PDF
    A new approach to cluster simulation is developed in the context of nucleation theory. This approach is free of any arbitrariness involved in the definition of a cluster. Instead, it preferentially and automatically generates the physical clusters, defined as the density fluctuations that lead to nucleation, and determines their equilibrium distribution in a single simulation, thereby completely bypassing the computationally expensive free energy evaluation that is necessary in a conventional approach. The validity of the method is demonstrated for a single component system using a model potential for water under several values of supersaturation
    corecore