124 research outputs found

    Absolute beam position monitoring using HOM-damper signals

    Get PDF
    To preserve the required beam quality in an e+/e- collider it is necessary to have a very precise beam position control at each accelerating cavity. An elegant method to avoid additional length and beam disturbance is the usage of signals from existing HOM-dampers. The magnitude of the displacement is derived from the amplitude of a dipole mode whereas the sign follows from the phase comparison of a dipole and a monopole HOM. To check the performance of the system, a measurement setup has been built with an antenna which can be moved with micrometer resolution to simulate the beam. Furthermore we have developed a signal processing to determine the absolute beam displacement. Measurements on the HOM-damper cell can be done in the frequency domain using a network analyser. Final measurements with the nonlinear time dependent signal processing circuit has to be done with very short electric pulses simulating electron bunches. Thus, we have designed a sub nanosecond pulse generator using a clipping line and the step recovery effect of a diode. The measurement can be done with a resolution of about 10 micrometers. Measurements and numerical calculations concerning the monitor design and the pulse generator are presented

    Analysis of HOM interaction between cavities by multi-modal s-parameter measurements

    Get PDF
    Accelerating cavities exchange HOM power through interconnecting beam pipes in case of signal frequencies above the cut-off of their propagating waveguide modes. This may lead either to improved HOM damping or - in the case most severe - to unwanted phase coherence of fields to the beam. Therefore the knowledge of the scattering properties of a cavity as a line element is needed to analyse all kinds of RF cavity-cavity interaction. Since there is a lack of measurement tools capable to provide a multidimensional scattering matrix at a given frequency point, we have been developing a method for this purpose. It uses a set of 2-port S-parameters of the device under test, embedded in a number of geometrically different RF environments. The application of the method is demonstrated with copper models of TESLA cavities

    Transversal loss factor of an rf-focussing iris structure with rectangular holes

    Get PDF
    By replacing the irises in an electron linac by a slit one gets a structure capable of focussing/defocussing an electron beam (rf-quadrupoles). Therefore one can think of a combination of rf- and conventional magnetic quadrupoles for transversal focussing in linear-colliders. Furthermore they can meet the demands of BNS-damping without initial energy spread. Considering multibunch-operation of a collider, the long-range wake behaviour of this kind of structure has to be investigated. A three-cell structure has been built and investigated for dipole-type transversal long-range wakes. The experimental results are compared to numerical simulations done with MAFIA

    The influence of wakefields on superconducting TESLA-cavities in FEL-operation

    Get PDF
    Due to the additional need of very short bunches for the FEL operation with the TESLA-machine strong wakefield effects are expected. One third of the total wakefield energy per bunch is radiated into the frequency region above the energy gap of Cooper pairs in superconducting niobium. The energy of the cooper pairs in superconducting niobium at 2 K corresponds to a frequency of 700 GHz. An analytical and experimental estimation for the overall energy loss of the FEL bunch above energy gap is presented. The analytical method is based on a study from R. B. Palmer [1]. The results of the wakefield estimations are used to calculate possible quality factor reduction of the TESLA cavities during FEL operation. Results are presented

    The design of the HOM-damping cells for the S-band linear collider

    Get PDF
    Damping cells for the higher order modes are necessary for the S-band linear collider to minimize BBU (Beam-Break-Up). The construction of the damper cells has to take into account the different field geometries of the higher order modes. So two different types of dampers have been designed: a wall slotted an an iris slotted cell. In order to optimize the two types of damping cells with respect to damping strength, impedance matching between coupling system and waveguide dampers and between damping cell and undamped cells and the tuning system, damping cells of both types have been built and examinated

    The effect of a single HOM-damper cell within a channel of undamped cells

    Get PDF
    The effect of a single HOM-damper cell within a channel of undamped cells is described theoretically using an equivalent circuit model. From this a simple equation can be derived which relates the Q-value of the single damping-cell, the bandwidth of the passband under consideration, and the additional phase shift which is introduced by the damper cell to provide energy flow into the damper cell. This equation immediately shows the limitations of such single cell damping systems. Comparisons with experimental results are shown
    • …
    corecore