5 research outputs found
The ABC130 barrel module prototyping programme for the ATLAS strip tracker
For the Phase-II Upgrade of the ATLAS Detector, its Inner Detector,
consisting of silicon pixel, silicon strip and transition radiation
sub-detectors, will be replaced with an all new 100 % silicon tracker, composed
of a pixel tracker at inner radii and a strip tracker at outer radii. The
future ATLAS strip tracker will include 11,000 silicon sensor modules in the
central region (barrel) and 7,000 modules in the forward region (end-caps),
which are foreseen to be constructed over a period of 3.5 years. The
construction of each module consists of a series of assembly and quality
control steps, which were engineered to be identical for all production sites.
In order to develop the tooling and procedures for assembly and testing of
these modules, two series of major prototyping programs were conducted: an
early program using readout chips designed using a 250 nm fabrication process
(ABCN-25) and a subsequent program using a follow-up chip set made using 130 nm
processing (ABC130 and HCC130 chips). This second generation of readout chips
was used for an extensive prototyping program that produced around 100
barrel-type modules and contributed significantly to the development of the
final module layout. This paper gives an overview of the components used in
ABC130 barrel modules, their assembly procedure and findings resulting from
their tests.Comment: 82 pages, 66 figure
How to evaluate the future business potential of innovation fields in the chemical industry
Decisions about the further development or termination of innovation fields (IF) have a high relevance for companies. However, due to a lack of information in the front end of innovation (FEI) as well as missing evaluation methods and criteria, selection decisions are often based on personal “gut feeling”. By identifying 24 indicators, which have a relevant influence on the business potential of IFs, the authors present a methodology to evaluate and determine the business potential of IFs in the FEI. This potential is determined by the newly developed Innovation Field Impact Factor (IFIF) combined with a Certainty Factor and depicted in a heat map. The heat map enables the identification of strengths and weaknesses in each IF as well as a comparison of the business potential of different IFs. After developing the methodology, its viability was verified using the example of eleven IFs at a specialty chemicals company. The presented methodology is an interesting approach for companies to develop their own specific indicators for the evaluation and selection of innovation projects and IFs in the FEI
The characterisation of commercial 2D carbons: graphene, graphene oxide and reduced graphene oxide
In this work we have comprehensively characterised 13 products from commercial suppliers that are claimed to be 2D materials: graphene, graphene oxide and reduced graphene oxide. The techniques used have investigated the materials from the macroscale to the atomic scale. The results are consistent across all length scales: none of the products meet the ISO definition of “a single layer of carbon atoms”. Rather, they are largely nanographite with a small percentage of single layer material present. One of the techniques used was inelastic neutron scattering (INS) spectroscopy. INS enables the materials to be examined in the C–H/O–H stretch region without the complications of electrical anharmonicity that bedevil infrared spectroscopy. The spectra clearly show that most of the hydrogen is present as sp2 C–H; sp3 C–H is either absent or present as a minority species. This provides strong support for the Lerf and Klinowski model of graphene oxide. The spectra also show that the number of hydroxyls present is small, indicating that most of the oxygen is present as epoxides or carbonyls
The ABC130 barrel module prototyping programme for the ATLAS strip tracker
For the Phase-II Upgrade of the ATLAS Detector [1], its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100% silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2,2] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests