709 research outputs found

    Hamiltonian Frenet-Serret dynamics

    Get PDF
    The Hamiltonian formulation of the dynamics of a relativistic particle described by a higher-derivative action that depends both on the first and the second Frenet-Serret curvatures is considered from a geometrical perspective. We demonstrate how reparametrization covariant dynamical variables and their projections onto the Frenet-Serret frame can be exploited to provide not only a significant simplification of but also novel insights into the canonical analysis. The constraint algebra and the Hamiltonian equations of motion are written down and a geometrical interpretation is provided for the canonical variables.Comment: Latex file, 14 pages, no figures. Revised version to appear in Class. Quant. Gra

    The Jang equation, apparent horizons, and the Penrose inequality

    Full text link
    The Jang equation in the spherically symmetric case reduces to a first order equation. This permits an easy analysis of the role apparent horizons play in the (non)existence of solutions. We demonstrate that the proposed derivation of the Penrose inequality based on the Jang equation cannot work in the spherically symmetric case. Thus it is fruitless to apply this method, as it stands, to the general case. We show also that those analytic criteria for the formation of horizons that are based on the use of the Jang equation are of limited validity for the proof of the trapped surface conjecture.Comment: minor misprints correcte

    Hamilton's equations for a fluid membrane: axial symmetry

    Full text link
    Consider a homogenous fluid membrane, or vesicle, described by the Helfrich-Canham energy, quadratic in the mean curvature. When the membrane is axially symmetric, this energy can be viewed as an `action' describing the motion of a particle; the contours of equilibrium geometries are identified with particle trajectories. A novel Hamiltonian formulation of the problem is presented which exhibits the following two features: {\it (i)} the second derivatives appearing in the action through the mean curvature are accommodated in a natural phase space; {\it (ii)} the intrinsic freedom associated with the choice of evolution parameter along the contour is preserved. As a result, the phase space involves momenta conjugate not only to the particle position but also to its velocity, and there are constraints on the phase space variables. This formulation provides the groundwork for a field theoretical generalization to arbitrary configurations, with the particle replaced by a loop in space.Comment: 11 page

    The isolation of gravitational instantons: Flat tori V flat R^4

    Full text link
    The role of topology in the perturbative solution of the Euclidean Einstein equations about flat instantons is examined.Comment: 15 pages, ICN-UNAM 94-1

    Contact lines for fluid surface adhesion

    Full text link
    When a fluid surface adheres to a substrate, the location of the contact line adjusts in order to minimize the overall energy. This adhesion balance implies boundary conditions which depend on the characteristic surface deformation energies. We develop a general geometrical framework within which these conditions can be systematically derived. We treat both adhesion to a rigid substrate as well as adhesion between two fluid surfaces, and illustrate our general results for several important Hamiltonians involving both curvature and curvature gradients. Some of these have previously been studied using very different techniques, others are to our knowledge new. What becomes clear in our approach is that, except for capillary phenomena, these boundary conditions are not the manifestation of a local force balance, even if the concept of surface stress is properly generalized. Hamiltonians containing higher order surface derivatives are not just sensitive to boundary translations but also notice changes in slope or even curvature. Both the necessity and the functional form of the corresponding additional contributions follow readily from our treatment.Comment: 8 pages, 2 figures, LaTeX, RevTeX styl

    Open String Fluctuations in AdS with and without Torsion

    Full text link
    The equations of motion and boundary conditions for the fluctuations around a classical open string, in a curved space-time with torsion, are considered in compact and world-sheet covariant form. The rigidly rotating open strings in Anti de Sitter space with and without torsion are investigated in detail. By carefully analyzing the tangential fluctuations at the boundary, we show explicitly that the physical fluctuations (which at the boundary are combinations of normal and tangential fluctuations) are finite, even though the world-sheet is singular there. The divergent 2-curvature thus seems less dangerous than expected, in these cases. The general formalism can be straightforwardly used also to study the (bosonic part of the) fluctuations around the closed strings, recently considered in connection with the AdS/CFT duality, on AdS_5 \times S^5 and AdS_3 \times S^3 \times T^4.Comment: 19 pages, Late

    Focusing of timelike worldsheets in a theory of strings

    Get PDF
    An analysis of the generalised Raychaudhuri equations for string world sheets is shown to lead to the notion of focusing of timelike worldsheets in the classical Nambu-Goto theory of strings. The conditions under which such effects can occur are obtained . Explicit solutions as well as the Cauchy initial value problem are discussed. The results closely resemble their counterparts in the theory of point particles which were obtained in the context of the analysis of spacetime singularities in General Relativity many years ago.Comment: 14 pages, RevTex, no figures, extended, to appear in Phys Rev

    An Equivalence Between Momentum and Charge in String Theory

    Full text link
    It is shown that for a translationally invariant solution to string theory, spacetime duality interchanges the momentum in the symmetry direction and the axion charge per unit length. As one application, we show explicitly that charged black strings are equivalent to boosted (uncharged) black strings. The extremal black strings (which correspond to the field outside of a fundamental macroscopic string) are equivalent to plane fronted waves describing strings moving at the speed of light.Comment: 10 page

    Frenet-Serret dynamics

    Get PDF
    We consider the motion of a particle described by an action that is a functional of the Frenet-Serret [FS] curvatures associated with the embedding of its worldline in Minkowski space. We develop a theory of deformations tailored to the FS frame. Both the Euler-Lagrange equations and the physical invariants of the motion associated with the Poincar\'e symmetry of Minkowski space, the mass and the spin of the particle, are expressed in a simple way in terms of these curvatures. The simplest non-trivial model of this form, with the lagrangian depending on the first FS (or geodesic) curvature, is integrable. We show how this integrability can be deduced from the Poincar\'e invariants of the motion. We go on to explore the structure of these invariants in higher-order models. In particular, the integrability of the model described by a lagrangian that is a function of the second FS curvature (or torsion) is established in a three dimensional ambient spacetime.Comment: 20 pages, no figures - replaced with version to appear in Class. Quant. Grav. - minor changes, added Conclusions sectio

    Heisenberg-picture approach to the evolution of the scalar fields in an expanding universe

    Get PDF
    We present the Heisenberg-picture approach to the quantum evolution of the scalar fields in an expanding FRW universe which incorporates relatively simply the initial quantum conditions such as the vacuum state, the thermal equilibrium state, and the coherent state. We calculate the Wightman function, two-point function, and correlation function of a massive scalar field. We find the quantum evolution of fluctuations of a self-interacting field perturbatively and discuss the renormalization of field equations.Comment: 15 pages, RevTeX, no figure
    • …
    corecore