63 research outputs found

    Individual differences in working memory affect situation awareness

    Get PDF
    2011 Summer.Includes bibliographical references.Situation awareness (SA) is a construct that brings together theories of attention, memory, and expertise in an empirical effort to showcase what awareness is and how it is acquired by operators. Endsley (1995a) defined SA in a way that includes many theoretical associations between awareness and specific memory and attention mechanisms. Work characterizing these relationships has been sparse, however, particularly with regard to the influence of working memory (WM) on SA in novices. An experiment was devised which principally investigated novice SA as a theorized function of WM across two distinct tasks; one in which operator attention and perception (Level 1 SA) was assessed, and one in which an operator's ability to respond to events in the future (Level 3 SA) was implicitly assessed. Factors analysis was used and resulting outcomes from three WM tasks loaded well onto one overall WM factor. Findings from 99 participants indicate that WM does have a correlative and predictive relationship with Level 3, but not Level 1 SA. Results reported here contribute to ongoing theory and experimental work in applied psychology with regard to SA and individual differences, showing WM influences awareness in novice performance even in the case where SA measures are not memory-reliant

    The Role of Individual Differences in Executive Attentional Networks and Switching Choices in Multi-Task Management

    Get PDF
    Individual differences in cognitive processing relate to critical performance differences in real-world environments. Task switching is required for many of them and especially for task management during overload. Research exploring individual differences related to switching behavior (both frequency, and adherence to optimal switch times) is, however, sparse. We examined these relationships here, using the attentional network task to index executive control, and an ongoing tracking task (within a larger suite of concurrent task demands) to examine switching behavior. The results failed to support a general relationship between executive control and frequency in a complex, heterogeneous multi-task environment. However, higher executive control participants more successfully exploited optimal switching times, highlighting the varying role of individual differences in task management, when choice is unconstrained

    Quantum chaos and critical behavior on a chip

    Full text link
    The Dicke model describes N qubits (or two-level atoms) homogenously coupled to a bosonic mode. Here we examine an open-system realization of the Dicke model, which contains critical and chaotic behaviour. In particular, we extend this model to include an additional open transport qubit (TQ) (coupled to the bosonic mode) for passive and active measurements. We illustrate how the scaling (in the number of qubits N) of the superradiant phase transition can be observed in both current and current-noise measurements through the transport qubit. Using a master equation, we also investigate how the phase transition is affected by the back-action from the transport qubit and losses in the cavity. In addition, we show that the non-integrable quantum chaotic character of the Dicke model is retained in an open-system environment. We propose how all of these effects could been seen in a circuit QED system formed from an array of superconducting qubits, or an atom chip, coupled to a quantized resonant cavity (e.g., a microwave transmission line).Comment: 7 page

    Circadian Effects on Simple Components of Complex Task Performance

    Get PDF
    The goal of this study was to advance understanding and prediction of the impact of circadian rhythm on aspects of complex task performance during unexpected automation failures, and subsequent fault management. Participants trained on two tasks: a process control simulation, featuring automated support; and a multi-tasking platform. Participants then completed one task in a very early morning (circadian night) session, and the other during a late afternoon (circadian day) session. Small effects of time of day were seen on simple components of task performance, but impacts on more demanding components, such as those that occur following an automation failure, were muted relative to previous studies where circadian rhythm was compounded with sleep deprivation and fatigue. Circadian low participants engaged in compensatory strategies, rather than passively monitoring the automation. The findings and implications are discussed in the context of a model that includes the effects of sleep and fatigue factors

    The Effect of Focusing and Caustics on Exit Phenomena in Systems Lacking Detailed Balance

    Full text link
    We study the trajectories followed by a particle subjected to weak noise when escaping from the domain of attraction of a stable fixed point. If detailed balance is absent, a _focus_ may occur along the most probable exit path, leading to a breakdown of symmetry (if present). The exit trajectory bifurcates, and the exit location distribution may become `skewed' (non-Gaussian). The weak-noise asymptotics of the mean escape time are strongly affected. Our methods extend to the study of skewed exit location distributions in stochastic models without symmetry.Comment: REVTEX macros (latest version). Two accompanying PS figures, one of which is large (over 600K unpacked

    Form factor for a family of quantum graphs: An expansion to third order

    Full text link
    For certain types of quantum graphs we show that the random-matrix form factor can be recovered to at least third order in the scaled time τ\tau from periodic-orbit theory. We consider the contributions from pairs of periodic orbits represented by diagrams with up to two self-intersections connected by up to four arcs and explain why all other diagrams are expected to give higher-order corrections only. For a large family of graphs with ergodic classical dynamics the diagrams that exist in the absence of time-reversal symmetry sum to zero. The mechanism for this cancellation is rather general which suggests that it may also apply at higher-orders in the expansion. This expectation is in full agreement with the fact that in this case the linear-τ\tau contribution, the diagonal approximation, already reproduces the random-matrix form factor for τ<1\tau<1. For systems with time-reversal symmetry there are more diagrams which contribute at third order. We sum these contributions for quantum graphs with uniformly hyperbolic dynamics, obtaining +2τ3+2\tau^{3}, in agreement with random-matrix theory. As in the previous calculation of the leading-order correction to the diagonal approximation we find that the third order contribution can be attributed to exceptional orbits representing the intersection of diagram classes.Comment: 23 pages (including 4 fig.) - numerous typos correcte

    On a semiclassical formula for non-diagonal matrix elements

    Get PDF
    Let H()=2d2/dx2+V(x)H(\hbar)=-\hbar^2d^2/dx^2+V(x) be a Schr\"odinger operator on the real line, W(x)W(x) be a bounded observable depending only on the coordinate and kk be a fixed integer. Suppose that an energy level EE intersects the potential V(x)V(x) in exactly two turning points and lies below V=lim infxV(x)V_\infty=\liminf_{|x|\to\infty} V(x). We consider the semiclassical limit nn\to\infty, =n0\hbar=\hbar_n\to0 and En=EE_n=E where EnE_n is the nnth eigen-energy of H()H(\hbar). An asymptotic formula for , the non-diagonal matrix elements of W(x)W(x) in the eigenbasis of H()H(\hbar), has been known in the theoretical physics for a long time. Here it is proved in a mathematically rigorous manner.Comment: LaTeX2

    Semiclassical Time Evolution and Trace Formula for Relativistic Spin-1/2 Particles

    Full text link
    We investigate the Dirac equation in the semiclassical limit \hbar --> 0. A semiclassical propagator and a trace formula are derived and are shown to be determined by the classical orbits of a relativistic point particle. In addition, two phase factors enter, one of which can be calculated from the Thomas precession of a classical spin transported along the particle orbits. For the second factor we provide an interpretation in terms of dynamical and geometric phases.Comment: 8 pages, no figure

    A Scaling Theory of Bifurcations in the Symmetric Weak-Noise Escape Problem

    Full text link
    We consider the overdamped limit of two-dimensional double well systems perturbed by weak noise. In the weak noise limit the most probable fluctuational path leading from either point attractor to the separatrix (the most probable escape path, or MPEP) must terminate on the saddle between the two wells. However, as the parameters of a symmetric double well system are varied, a unique MPEP may bifurcate into two equally likely MPEP's. At the bifurcation point in parameter space, the activation kinetics of the system become non-Arrhenius. In this paper we quantify the non-Arrhenius behavior of a system at the bifurcation point, by using the Maslov-WKB method to construct an approximation to the quasistationary probability distribution of the system that is valid in a boundary layer near the separatrix. The approximation is a formal asymptotic solution of the Smoluchowski equation. Our analysis relies on the development of a new scaling theory, which yields `critical exponents' describing weak-noise behavior near the saddle, at the bifurcation point.Comment: LaTeX, 60 pages, 24 Postscript figures. Uses epsf macros to include the figures. A file in `uufiles' format containing the figures is separately available at ftp://platinum.math.arizona.edu/pub/papers-rsm/paperF/figures.uu and a Postscript version of the whole paper (figures included) is available at ftp://platinum.math.arizona.edu/pub/papers-rsm/paperF/paperF.p
    corecore