56,964 research outputs found
Formation of iron nitride thin films with Al and Ti additives
In this work we investigate the process of iron nitride (Fe-N) phase
formation using 2 at.% Al or 2 at.% Ti as additives. The samples were prepared
with a magnetron sputtering technique using different amount of nitrogen during
the deposition process. The nitrogen partial pressure (\pn) was varied between
0-50% (rest Argon) and the targets of pure Fe, [Fe+Ti] and [Fe+Al] were
sputtered. The addition of small amount of Ti or Al results in improved
soft-magnetic properties when sputtered using \pn 10\p. When \pn is
increased to 50\p non-magnetic Fe-N phases are formed. We found that iron
mononitride (FeN) phases (N at% 50) are formed with Al or Ti addition at
\pn =50% whereas in absence of such addition \eFeN phases (N\pat30) are
formed. It was found that the overall nitrogen content can be increased
significantly with Al or Ti additions. On the basis of obtained result we
propose a mechanism describing formation of Fe-N phases Al and Ti additives.Comment: 9 Pages, 7 Figure
Bc spectroscopy in a quantum-chromodynamic potential model
We have investigated spectroscopy with the use of a
quantum-chromodynamic potential model which was recently used by us for the
light-heavy quarkonia. We give our predictions for the energy levels and the
1 transition widths. We also find, rather surprisingly, that although
is not a light-heavy system, the heavy quark effective theory with the
inclusion of the and corrections is as successful
for as it is for and .Comment: 10 page ReVTeX pape
Application of temporal streamflow descriptors in hydrologic model parameter estimation
This paper presents a parameter estimation approach based on hydrograph descriptors that capture dominant streamflow characteristics at three timescales (monthly, yearly, and record extent). The scheme, entitled hydrograph descriptors multitemporal sensitivity analyses (HYDMUS), yields an ensemble of model simulations generated from a reduced parameter space, based on a set of streamflow descriptors that emphasize the timescale dynamics of streamflow record. In this procedure the posterior distributions of model parameters derived at coarser timescales are used to sample model parameters for the next finer timescale. The procedure was used to estimate the parameters of the Sacramento soil moisture accounting model (SAC-SMA) for the Leaf River, Mississippi. The results indicated that in addition to a significant reduction in the range of parameter uncertainty, HYDMUS improved parameter identifiability for all 13 of the model parameters. The performance of the procedure was compared to four previous calibration studies on the same watershed. Although our application of HYDMUS did not explicitly consider the error at each simulation time step during the calibration process, the model performance was, in some important respects, found to be better than in previous deterministic studies. Copyright 2005 by the American Geophysical Union
Noncommutative BTZ Black Hole and Discrete Time
We search for all Poisson brackets for the BTZ black hole which are
consistent with the geometry of the commutative solution and are of lowest
order in the embedding coordinates. For arbitrary values for the angular
momentum we obtain two two-parameter families of contact structures. We obtain
the symplectic leaves, which characterize the irreducible representations of
the noncommutative theory. The requirement that they be invariant under the
action of the isometry group restricts to symplectic leaves,
where is associated with the Schwarzschild time. Quantization may then lead
to a discrete spectrum for the time operator.Comment: 10 page
Implications of binary black hole detections on the merger rates of double neutron stars and neutron star-black holes
We show that the inferred merger rate and chirp masses of binary black holes
(BBHs) detected by advanced LIGO (aLIGO) can be used to constrain the rate of
double neutron star (DNS) and neutron star - black hole (NSBH) mergers in the
universe. We explicitly demonstrate this by considering a set of publicly
available population synthesis models of \citet{Dominik:2012kk} and show that
if all the BBH mergers, GW150914, LVT151012, GW151226, and GW170104, observed
by aLIGO arise from isolated binary evolution, the predicted DNS merger rate
may be constrained to be ~\rate~ and that of NSBH mergers will be
constrained to ~\rate. The DNS merger rates are not constrained much
but the NSBH rates are tightened by a factor of as compared to their
previous rates. Note that these constrained DNS and NSBH rates are extremely
model dependent and are compared to the unconstrained values \rate~
and \rate, respectively, using the same models of
\citet{Dominik:2012kk}. These rate estimates may have implications for short
Gamma Ray Burst progenitor models assuming they are powered (solely) by DNS or
NSBH mergers. While these results are based on a set of open access population
synthesis models which may not necessarily be the representative ones, the
proposed method is very general and can be applied to any number of models
thereby yielding more realistic constraints on the DNS and NSBH merger rates
from the inferred BBH merger rate and chirp mass.Comment: 5 pages, no figures, 4 tables, v2: matches published versio
- …