26 research outputs found
Porous silica nanosheets in PIM-1 membranes for CO2 separation
PIM-1-based freestanding mixed matrix membranes (MMMs) and thin film nanocomposites (TFNs) were prepared by incorporating porous silica nanosheets (SN) and exfoliated SN (E-SN) derived from natural vermiculite (Verm) in the PIM-1 polymer matrix. In addition, SN were functionalized by sulfonic acid and amine groups (S-SN and N-SN, respectively) and were also used as fillers for the preparation of MMMs. The gas separation performance was evaluated using CO2/CH4 and CO2/N2 (1:1, v:v) binary gas mixtures. Among freestanding membranes, fresh ones (i.e. tested right after preparation) containing 0.05 wt% functionalized SN and E-SN outperformed the neat PIM-1, surpassing the 2008 Robeson upper bound. At the same filler concentration, fresh MMMs with sulfonic acid-functionalized SN (S-SN) exhibited 40% higher CO2 permeability, 20% higher CO2/N2 selectivity and almost the same CO2/CH4 selectivity as neat PIM-1 membranes. Moreover, after 150 days of aging, these membranes were capable of maintaining up to 68% of their initial CO2 permeability (compared to 37% for neat PIM-1). When prepared as TFN membranes, the incorporation of 0.05 wt% of S-SN led to 35% higher initial CO2 permeance and five times higher CO2 permeance after 28 days
Thin film nanocomposite membranes of PIM-1 and graphene oxide/ZIF-8 nanohybrids for organophilic pervaporation
In this work, thin film nanocomposite (TFN) membranes of super-glassy polymer PIM-1 containing zeolitic imidazolate framework-8 (ZIF-8)/graphene oxide (GO) composites (ZG) have been prepared by dip-coating onto water pre-impregnated polyvinylidene fluoride (PVDF) substrates. Higher flux and improved separation factors as compared to bare PIM-1 thin film composite (TFC) membranes have been achieved in organophilic pervaporation; for an aqueous feed solution with 5 wt% of butanol at 65 °C, a total permeate flux of 7.9 ± 0.69 kg m−2h−1 and a separation factor (βBtOH/H2O) of 29.9 ± 1.99 have been obtained with a TFC membrane containing 0.5 wt% of ZG filler. The pervaporation separation index (PSI) of this membrane (228 kg m−2h−1) is amongst the highest values reported in the literature. This excellent performance is attributed to the formation of a defect-free PIM-1 active layer (<1 μm) and the hydrophobic nature of the ZG fillers.Patricia Gorgojo is grateful to the Spanish Ministerio de EconomÃa y Competitividad and the European Social Fund for her Ramon y Cajal Fellowship (RYC2019-027060-I/AEI/10.13039/501100011033). Boya Qiu would like to acknowledge the China Scholarship Council (CSC, file no. 202006240076)and the University of Manchester for the joint PhD studentship to support her research.Peer reviewe
Porous silica nanosheets in PIM-1 membranes for CO2 separation
PIM-1-based freestanding mixed matrix membranes (MMMs) and thin film nanocomposites (TFNs) were prepared by incorporating porous silica nanosheets (SN) and exfoliated SN (E-SN) derived from natural vermiculite (Verm) in the PIM-1 polymer matrix. In addition, SN were functionalized by sulfonic acid and amine groups (S-SN and N-SN, respectively) and were also used as fillers for the preparation of MMMs. The gas separation performance was evaluated using CO2/CH4 and CO2/N2 (1:1, v:v) binary gas mixtures. Among freestanding membranes, fresh ones (i.e. tested right after preparation) containing 0.05 wt% functionalized SN and E-SN outperformed the neat PIM-1, surpassing the 2008 Robeson upper bound. At the same filler concentration, fresh MMMs with sulfonic acid-functionalized SN (S-SN) exhibited 40% higher CO2 permeability, 20% higher CO2/N2 selectivity and almost the same CO2/CH4 selectivity as neat PIM-1 membranes. Moreover, after 150 days of aging, these membranes were capable of maintaining up to 68% of their initial CO2 permeability (compared to 37% for neat PIM-1). When prepared as TFN membranes, the incorporation of 0.05 wt% of S-SN led to 35% higher initial CO2 permeance and five times higher CO2 permeance after 28 days.S. Mohsenpour thanks the University of Manchester for funding his Ph.D. studies. P. Gorgojo acknowledges the Spanish Ministry of Economy and Competitiveness and the European Social Fund through the Ramon y Cajal programme (RYC2019-027060-I/AEI/10.13039/501100011033). Stuart M. Holmes thanks the EPSRC grant EP/009050.Peer reviewe
Porous silica nanosheets in PIM-1 membranes for CO2 separation
PIM-1-based freestanding mixed matrix membranes (MMMs) and thin film nanocomposites (TFNs) were prepared by incorporating porous silica nanosheets (SN) and exfoliated SN (E-SN) derived from natural vermiculite (Verm) in the PIM-1 polymer matrix. In addition, SN were functionalized by sulfonic acid and amine groups (S-SN and N-SN, respectively) and were also used as fillers for the preparation of MMMs. The gas separation performance was evaluated using CO2/CH4 and CO2/N2 (1:1, v:v) binary gas mixtures. Among freestanding membranes, fresh ones (i.e. tested right after preparation) containing 0.05 wt% functionalized SN and E-SN outperformed the neat PIM-1, surpassing the 2008 Robeson upper bound. At the same filler concentration, fresh MMMs with sulfonic acid-functionalized SN (S-SN) exhibited 40% higher CO2 permeability, 20% higher CO2/N2 selectivity and almost the same CO2/CH4 selectivity as neat PIM-1 membranes. Moreover, after 150 days of aging, these membranes were capable of maintaining up to 68% of their initial CO2 permeability (compared to 37% for neat PIM-1). When prepared as TFN membranes, the incorporation of 0.05 wt% of S-SN led to 35% higher initial CO2 permeance and five times higher CO2 permeance after 28 days.S. Mohsenpour thanks the University of Manchester for funding his Ph.D. studies. P. Gorgojo acknowledges the Spanish Ministry of Economy and Competitiveness and the European Social Fund through the Ramon y Cajal programme (RYC2019-027060-I/AEI/10.13039/501100011033). Stuart M. Holmes thanks the EPSRC grant EP/009050.Peer reviewe
Probable congenital transmission of reticuloendotheliosis virus caused by vaccination with contaminated vaccines.
Contaminated vaccine is one unexpected and potential origin of virus infection. In order to investigate the most likely cause of disease in a broiler breeder company of Shandong Province, all 17 batches of live-virus vaccines used in the affected flocks and 478 tissue samples were tested by dot-blot hybridization, nested PCR, and IFA. The results suggested the outbreak of disease was most probably due to the vaccination of REV-contaminated MD-CVI988/Rispens vaccines and ND-LaSota+IB-H120 vaccines. Furthermore, the REV was probably transmitted to the commercial chickens through congenital transmission